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Abstract

Differential equations have been studied for a long time. Various exact solution

methods have been proposed for special cases. The main aim of this dissertation is to

develop and investigate new methods for determining liouvillian solutions of first-order

algebraic ordinary differential equations (AODEs). For this purpose, the differential

problem is transformed into an algebraic geometric one by considering the differential

equation to be an algebraic equation. Such an equation defines an algebraic curve and

therefore, tools from algebraic geometry can be applied. In particular, parametrizations

of algebraic curves and algebraic function fields are intrinsically used to solve the

problem and prove properties of the obtained solutions.

A first idea for determining rational liouvillian solutions of first-order autonomous

AODEs is presented. This approach is a generalization of a well-known algorithm for

finding rational solutions. It admits an extension to the computation of the liouvillian

solutions which is obtained by considering the wider differential fields.

A second focus lies on the extension of the first idea to the problem of finding liou-

villian solutions of first-order autonomous AODEs of genus zero. In this situation, the

theory of associated fields of algebraic functions is applied to prove a liouvillian solution

(if there exists) must be a rational liouvillian solution. This leads to a classification of

the liouvillian solutions respect to algebraic and transcendental cases.

Last focus studies liouvillian solutions of first-order AODEs. If an AODE is of

genus zero, we prove that its liouvillian solutions can be found via first-order quasi-

linear ODEs by means of associated fields of algebraic functions and optimal rational

parametrizations. This method inherits the approach of existing algorithms for find-

ing rational general solutions. Finally, we present an approach for solving first-order

AODEs of positive genera by means of power transformations.
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Introduction

A differential equation (DE) is an equation that includes one or more unknown

functions and their derivatives. The history of DEs can be traced back to the inven-

tion of calculus by Newton (in physics) and Leibniz (in pure mathematics) around

1660s–1670s. In application, the functions generally represent physical quantities, the

derivatives represent their rates of change, and the DE defines a relationship between

the two. Hence, these DEs play a prominent role in many disciplines including physics,

engineering, economics, and biology. If a DE contains an unknown function and its

derivatives which depend on an independent variable x then it is called an ordinary

differential equation (ODE). A DE is called linear if the relationship of the unknown

function and its derivatives is linear; otherwise, it is called nonlinear. Such DEs can

exhibit very complicated behavior over extended time intervals, characteristic of chaos.

Unfortunately, there are very few methods of solving nonlinear DEs exactly. Most

ODEs encountered in physics are linear; hence, there are many ways for solving them.

An idea of transforming nonlinear DEs into linear DEs and then solve the last ones may

be a reasonable candidate. However, it works for only some cases. Therefore, studying

independently the solutions of nonlinear DEs is necessary, and it also contains a lot

of challenges. In this dissertation, we study liouvillian general solutions of first-order

algebraic ordinary differential equations (AODEs) which is a fundamental problem in

the theory of non-linear algebraic DEs.

A first-order AODE is a DE of the form F (y, y′) = 0, where F is an irreducible

polynomial in two variables with coefficients in K(x), K is an algebraically closed field

of characteristic zero. Solving an AODE is a problem of determining differentiable

functions y = y(x) satisfying F (y(x), y′(x)) = 0. If y(x) belongs to K(x) (resp. an

algebraic extension field of K(x)), then it is called a rational solution (resp. an algebraic

solution). If such a solution y(x) belongs to a liouvillian extension of K(x), then it

is called a liouvillian solution. A solution may contain an arbitrary constant. In this

case, such a solution is called a general solution. For example, y(x) = exp(x2 + c) is a

liouvillian general solution of the first-order AODE y′ − 2xy = 0.
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First-order AODEs have been studied a lot and there are many solution methods

for their special classes. The study of these AODEs can be dated back to the works

of Fuchs [16] (1884). In [20] (1926), Ince presented an overall picture of ODEs. In

[30,31] (1970s), Matsuda classified differential function fields having no movable critical

points up to isomorphism of differential fields. By focusing on particular solutions, in

[29] (1913), Malmquist studied the class of first-order AODEs having transcendental

meromorphic solutions, and Eremenko revisited later in [10] (1982). Applied Matsuda’s

theory, Eremenko in [11] (1998) gave a theoretical consideration on a degree bound for

rational solutions which sheds light on the issue of finding the solution’s explicit form.

Finding the closed form solution of an ODE can be traced back to the works of

Liouville (1830s) for the simplest ODE y′ = α, where α ∈ k and k is a differential

field of characteristic zero. If such an equation has a solution in some elementary

differential extension field E of k having the same subfield of constants K, then there

exist constants c1, c2, . . . , cn ∈ K, elements u1, u2, . . . , un ∈ Kk and v ∈ k such that

α =
n∑

i=1

ci
u′i
ui

+ v′.

In [44] (1968), Rosenlicht showed how Liouville theorem can be handled algebraically.

For the algorithm consideration of such ODE, the pioneer work is due to Risch. In

[41, 42] (1960s), Risch described a method to determine an elementary integral
∫
u

where u is an elementary function. To extend Risch’s method, in [51, 52] (1970s),

Singer studied elementary solutions of first-order AODEs. As a special result, there are

necessary and sufficient conditions for the ODE y′ = R(y) ∈ C(y) having an elementary

solution. In [56] (2017), Srinivasan generalized this result to the case of liouvillian

solutions with the same conditions. In [25] (1986), Kovacic presented an effective

method to find liouvillian solutions of second order linear homogeneous ODEs. This

work contains an algorithm for finding rational general solutions of a Riccati equation

which is applicable to the works of Chen and Ma [7] (2005) and Vo et al. [57] (2018)

for determining rational general solutions of first-order parametrizable AODEs. In [19]

(1996), Hubert studied implicit general solutions of F (y, y′) = 0 by computing Gröbner

bases. In [40] (1983), Prelle and Singer studied elementary first integrals I(x, y) of the

following system of ODEs

dx

dz
= P (x, y);

dy

dz
= Q(x, y), where P (x, y), Q(x, y) ∈ C[x, y].

Such a first integral induces a general solution I(x, y) = c of the ODE y′ =
Q(x, y)

P (x, y)
. In

[55] (1992), Singer revisited this problem for finding liouvillian first integrals I(x, y). In

computational aspects, recently, Duarte and Da Mota, [9] (2021), presented an efficient

method for computing liouvillian first integrals.
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The starting point for the algebro-geometric method was algorithms introduced

by the works of Feng and Gao in [14,15] (2000s). These algorithms decide whether or

not an autonomous first-order AODE, F (y, y′) = 0, has a rational general solution and

compute it if there is any. The key point is that a rational solution of such an AODE

induces a proper rational parametrization of the corresponding algebraic curve, from

that, we find a reparametrization such that the second component is the derivative of

the first one. The existence of a proper parametrization can be decided by the works of

Sendra and Winkler [49] (2001). From that, a rational general solution can be deduced.

Using the ideas of Feng and Gao in [14, 15], several generalizations have been

investigated since then. There are (not exhausted) notable works. In [7], by means of

rational parametrizations, Chen and Ma reduced the problem of determining rational

general solutions of a first-order parametrizable AODE to the case of solving a Riccati

equation. In here, the method in [25] for finding rational general solutions (of a Riccati

equation) can be applied. This work is not complete due to the rational forms of the

rational parametrizations over a rational function field are required. In [33,34] (2010s),

Ngo and Winkler introduced a method based on parametrizations of surfaces for finding

rational general solutions of such parametrizable AODEs. In [57], by determining an

optimal parametrization of an algebraic curve over a rational function field, Vo et al.

overcame the missing steps of [7] and obtained a decision algorithm of finding strong

rational general solutions of first-order AODEs. A summarization and more aspects of

the algebro-geometric method can be found in Sebastian et al. [12] (2023).

In this dissertation, we inherit and extend the works by Feng and Gao [14, 15],

Srinivasan [56], and Vo et al. [57] for determining liouvillian solutions of first-order

AODEs. In particular, the dissertation contributes the following results.

• Define rational liouvillian solutions (see Definition 2.2.3) and give an algorithm

(see Algorithm RatLiouSol in Section 2.4) for finding such rational liouvillian

solutions of first-order autonomous AODEs.

• Show that a liouvillian solution (which includes the class of algebraic solutions)

of a first-order autonomous AODE of genus zero must be a rational liouvillian

solution (see Lemma 3.2.2) and give an algorithm (see Algorithm LiouSolAut in

Section 3.3) for finding and classifying such a liouvillian solution in algebraic and

transcendental cases.

• Propose an algorithm (see Algorithm LiouSol in Section 4.1.2) for determining

liouvillian solutions of first-order AODEs of genus zero (included autonomous

and non-autonomous cases).
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• Define power transformations (see Definition 4.2.1) and give an algorithm (see

Algorithm RedPol in Section 4.2.2) to obtain reduced forms of first-order AODEs.

This result leads to a method for finding liouvillian solutions of first-order AODEs

of positive genera in case their reduced forms are of genus zero (see Section 4.2.3).

• Transform the problem of solving first-order AODEs with liouvillian coefficients

into the case of solving an AODE (4.1) by means of change of variables (see

Section 4.4).

In this dissertation, we summarize our works in the last three years and give short

description of our future research. The dissertation is organized as follows.

Chapter 1 presents basic materials in differential algebra and algebraic geometry.

It also contains the main tools using regularly in the dissertation.

In Chapter 2, we define rational liouvillian solutions of first-order autonomous

AODEs. Using the properties of rational parametrizations of algebraic curves, we give

necessary and sufficient conditions for a first-order autonomous AODE to have rational

liouvillian solutions. Based on this, we present an algorithm for determining rational

liouvillian solutions of first-order autonomous AODEs.

In Chapter 3, we apply the theory of fields of algebraic functions of one variable

to show that a liouvillian solutions of a first-order autonomous AODE of genus zero, if

there exists, must be a rational liouvillian solution. By using Sylvester resultant, the

forms of the liouvillian solutions can be described in algebraic relations. These results

lead to an algorithm for determining the existence of such liouvillian solutions.

In Chapter 4, we study liouvillian solutions of first-order AODEs of genus zero

via their associated ODEs by means of rational parametrizations. Using the theory

of fields of algebraic functions of one variable, we prove that the property of having a

liouvillian general solution of the two above differential equations are the same. This

result covers the autonomous case considered in Chapter 3. If first-order AODEs are of

positive genera, then there is an approach for solving them. First, we give an algorithm

to compute a reduced form of a given AODE by means of power transformations.

From that, we present a method for finding liouvillian solutions of certain first-order

AODEs of positive genera whose reduced forms are of genus zero. In final consideration,

we study the problem of solving first-order AODEs with coefficients in a liouvillian

extension of C(x) by means of change of variables.
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Chapter 1

Preliminaries

In this chapter, we briefly recall some basic notions and definitions in differential

algebra and algebraic geometry which are tailored for the dissertation. The chapter is

organized as follows. Section 1.1 introduces algebraic ordinary differential equations

and their general solutions. Section 1.2 gives the definitions of plane algebraic curves

and the computation of their genera. Section 1.3 presents general concepts of fields of

algebraic functions of one variable. Section 1.4 shows the models of fields of algebraic

functions related to projective algebraic curves. Section 1.5 prepares the main tools

which are using regularly in this dissertation: associated algebraic function fields and

rational parametrizations. More details of differential algebra and algebraic geometry

can be found in the standard textbooks such as [4,24,43] and [8,27,50,59], respectively.

1.1 Differential algebra

Definition 1.1.1. Let k be a field of characteristic zero. A derivation of the field k,

denote by ′, is an operation of k that satisfies the two following items:

1. (a+ b)′ = a′ + b′

2. (ab)′ = a′b+ ab′

for every a, b ∈ k. A field k equipped with a derivation ′ is called a differential field.

An element a ∈ k is called a constant if a′ = 0.

Definition 1.1.2. A field extension E of k is called a differential field extension of k

if and only if the derivation of E restricted to k coincides with the derivation of k.

5



Remark 1.1.3. Every field K can be seen as a differential field of constants with the

trivial derivation which maps all elements of the field to zero. Let K(x) be the field

of rational functions in x with coefficients in K. The trivial derivation on K can be

extended to a derivation ′ =
d

dx
on K(x) in such a way that x′ =

d

dx
(x) = 1.

In general, we consider the field of rational functions

K(x1, x2, . . . , xn)

for some algebraically closed field K of characteristic zero. By
∂

∂xi
we denote the usual

derivative by xi. In the case of n = 1, we also write x for x1 and ′ or
d

dx
for

∂

∂x1
.

Then such field of rational functions K(x1, x2, . . . , xn) together with the derivations is

a differential field. The ring of differential polynomials is denoted by

R := K(x1, x2, . . . , xn){y}

which consists of all polynomials in y and its derivatives. For higher-order derivatives

we use

y(1) = y′ and recursively y(k) = (y(k−1))′.

Definition 1.1.4. An ideal Σ in R is called a differential ideal if it is closed under the

derivation, i.e. Σ′ ⊆ Σ. In addition, if Σ is prime (resp. radical) ideal of R, it is called

a prime (resp. radical) differential ideal.

This dissertation mainly focuses on the ring of differential polynomials K(x){y},
and the problem of finding liouvillian solutions of a polynomial F of order one in it.

From now on we denote by K an algebraically closed field of characteristic zero with the

trivial derivation. In practice, we might choose K = C, the field of complex numbers.

Definition 1.1.5. An algebraic ordinary differential equation (AODE) is defined by

an irreducible differential polynomial F ∈ K(x){y} whose coefficients in K(x). An

AODE is called autonomous if F ∈ K{y}, that is if the coefficients of F do not depend

on the variables of differentiation x. An AODE is called non-autonomous if it is not

necessarily autonomous.

Definition 1.1.6. Let Σ be a differential ideal in K(x){y} and let E be a differential

field extension of K. We call ξ = (ξ1, ξ2, . . . , ξk) ∈ Ek a zero of Σ if it vanishes all of

elements of Σ.

Definition 1.1.7. Let Σ be a prime differential ideal in K(x){y} and ξ be a zero of

Σ. Then we call ξ a generic zero of Σ if for any differential polynomial P ∈ K(x){y},
if P (ξ) = 0 then P must be in Σ.
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Remark 1.1.8. It is well-known that every prime differential ideal has a generic zero.

Let F be an irreducible differential polynomial of order n, the separant of F is

denoted by

SF =
∂F

∂y(n)
.

Due to Ritt [43, Chapter II], the radical differential ideal {F} generated by F, can be

decomposed by the Σ1,Σ2, . . . ,Σk as follows

{F} = Σ1 ∩ Σ2 ∩ . . . ∩ Σk.

Note that, a prime divisor of an ideal is called essential if it does not contain any other

prime divisor. We can rewrite the above representation by

{F} = ΣF ∩ {F, SF},

where

Σ1 = ΣF = {F} : ⟨SF ⟩ = {P ∈ K(x){y} | SFP ∈ {F}}

is a prime differential ideal which does not vanish SF , and

Σ2 ∩ . . . ∩ Σk = {F, SF}.

This ΣF is called the general component , and the other part {F, SF} is called the

singular component.

Definition 1.1.9. A zero of {F} is called a solution of the AODE F = 0. A solution

is called non-singular if it fails to annul the separant. Otherwise, it is called singular.

Definition 1.1.10. A generic zero of ΣF is called a general solution of the AODE

F = 0. A general solution depends on some transcendental constant.

Remark 1.1.11. The non-singular zeros are all contained in the general component.

Every non-singular solutions can be expressed by a certain evaluation of the constants

in the general solution. No choice of evaluating the constant yields a singular solution.

Let E be a differential field extension of k and let ′ denote the derivation on it.

Definition 1.1.12. ([4, Definition 5.1.1]) t ∈ E is primitive over k if t′ ∈ k. t ∈ E\0
is hyperexponential over k if t′/t ∈ k. t ∈ E is liouvillian over k if t is either algebraic,

or primitive, or hyperexponential over k. E is a liouvillian extension of k if

E = k(t1, t2, . . . , tn),

and there is a tower of differential fields

k = k0 ⊆ k1 ⊆ · · · ⊆ kn = E

such that for each i ∈ {1, . . . , n}, ki = ki−1(ti) and ti is liouvillian over ki−1.

7



Definition 1.1.13. ([4, Definition 5.1.3]) t ∈ E is a logarithm over k if t′ = b′/b for

some b ∈ k\0. t ∈ E\0 is exponential over k if t′/t = b′ for some b ∈ k. t ∈ E is

elementary over k if t is either algebraic, or exponential, or a logarithm over k.

Definition 1.1.14. E is an elementary extension of k if

E = k(t1, t2, . . . , tn),

and there is a tower of differential fields

k = k0 ⊆ k1 ⊆ · · · ⊆ kn = E

such that for each i ∈ {1, . . . , n}, ki = ki−1(ti) and ti is elementary over ki−1.

We write t = log b when t is a logarithm over k such that t′ = b′/b, and t = exp b

when t is exponential over k such that t′/t = b′.

Remark 1.1.15. Since logarithms are also primitive and exponential elements are also

hyperexponential, then an elementary extension of K(x) is also a liouvillian extension

of K. However, the inverse is not true, i.e. a liouvillian extension of K is not necessarily

an elementary extension of K(x), for instance, see Example 1.1.19.

Definition 1.1.16. Consider the algebraic ordinary differential equation

F (y, y′, . . . , y(n)) = 0.

Let ξ be a solution which is contained in a differential field E extended from K(x). We

denote by K the field of constants of E.

1. ξ is called an algebraic solution if there is a non-zero polynomial G ∈ K[x, y] such

that G(x, ξ) = 0. In this case, G is called an annihilating polynomial of ξ.

2. If degy G = 1, then ξ is called a rational solution.

3. ξ is called a liouvillian solution (resp. elementary solution) if it belongs to some

liouvillian (resp. elementary) extension of K(x).

4. ξ is called a liouvillian (resp. elementary, algebraic, rational) general solution if

it is a general solution and liouvillian (resp. elementary, algebraic, rational).

Remark 1.1.17. By [1, Lemma 2.4], ifG(x, y) is an irreducible annihilating polynomial

of ξ, then all roots y = y(x) of the algebraic equation G(x, y) = 0 are solutions of the

differential equation. Therefore, by abuse of notation, such algebraic equation G is

sometimes called an algebraic solution.
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This dissertation aims to study liouvillian general solutions of a first-order AODE

F (y, y′) = 0, (1.1)

where F is an irreducible polynomial in C(x)[y, w]. A liouvillian general solution of an

AODE (1.1) is a liouvillian solution which fails to annul the separant SF =
∂F

∂y′
.

Example 1.1.18. [19, Example 2.4] Consider the first-order autonomous AODE

F (y, y′) = y′2 − 4y = 0.

We obtain y = (x+a)2 is a general solution, where a ∈ C is an arbitrary constant. The

separant of F is SF = 2y′ which has a solution y = c ∈ C. If we choose c = 0, then the

solution of separant is also the solution of F . Note that y can not be obtained from the

general solution y = (x+ a)2 by specializing a. As seen in above introduction, y = 0 is

a singular solution.

Example 1.1.19 shows that a liouvillian solution over C of an AODE (1.1) may

be not necessarily an elementary solution over C(x).

Example 1.1.19. ([4, Example 6.3.2]) Consider first-order AODE

F (y, y′) = y′ − 2xy − 1 = 0.

Since SF = 1, then F has no singular solution. The above AODE has a general solution

y(x) = exp x2
(∫

exp (−x2)dx+ c

)
which is a liouvillian solution over C since it belongs to a liouvillian extension

E = C
(
x, exp(x2),

∫
exp (−x2)dx+ c

)
⊃ C

(
x, exp(x2)

)
⊃ C(x).

Since the integration ∫
exp (−x2)dx

is not an elementary function (see [44] or [4, Chapter 6]), then the liouvillian extension

E is not an elementary extension over C(x). Hence, y(x) is not an elementary solution.

Remark 1.1.20. Since the class of liouvillian solutions includes elementary solutions,

then if an AODE (1.1) has no liouvillian solutions then it has no other solutions in

Definition 1.1.16. By [59, Chapter 3], an AODE (1.1) has only finite singular solutions.

Therefore, the liouvillian solutions obtained by the dissertation’s method are always

the general ones since they contain an arbitrary c ∈ C which generates infinitely many

solutions. For a glance but reasonable enough information of such general solutions,

see [12, Section 2]. For fully details, we refer to [43, Chapter II].
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1.2 Plane algebraic curves

Let K be an algebraically closed field of characteristic zero. Let us denote

A2(K) := K2 the affine plane over K and K[X, Y ] the polynomial algebra in the

variables X and Y over K. For F ∈ K[X, Y ], then the zero set of F is

V(F ) := {(x, y) ∈ A2(K) | F (x, y) = 0}.

Definition 1.2.1. A subset C ⊂ A2(K) is called an affine algebraic curve (a curve,

for briefly) if there is a non-constant irreducible polynomial F ∈ K[X, Y ] such that

C = V(F ). Such F is called the defining polynomial of C. By abuse of notation, we

sometime call F (x, y) = 0 an affine algebraic curve.

The projective plane P2(K) over an algebraically closed field K is the set of

all lines in K3 through the origin. The points P ∈ P2(K) will therefore be given

by triples ⟨x0, x1, x2⟩ with (x0, x1, x2) ∈ K3\(0, 0, 0), where ⟨x0, x1, x2⟩ = ⟨y0, y1, y2⟩ if
(x0, x1, x2) = λ(y0, y1, y2) for some λ ∈ K\{0}. The triple (x0, x1, x2) is called a system

of homogeneous coordinates for P = ⟨x0, x1, x2⟩ . Let K[X0, X1, X2] be the polynomial

algebra over K in the variables X0, X1, X2. If F̂ ∈ K[X0, X1, X2] is a homogeneous

polynomial and P = ⟨x0, x1, x2⟩ is a point of P2(K), we then call P a zero of F̂ if

F (x0, x1, x2) = 0. If degF̂ = d, then

F̂ (λX0, λX1, λX2) = λdF̂ (X0, X1, X2) for any λ ∈ K,

and therefore the condition F̂ (x0, x1, x2) = 0 does not depend on the particular choice

of homogeneous coordinates for P. Hence, we can write F̂ (P ) = 0. The set

V(F̂ ) := {P ∈ P2(K) | F̂ (P ) = 0}

is called the zero set of F̂ in P2(K).

Definition 1.2.2. A subset Γ ⊂ P2(K) is called a projective algebraic curve if there

is a non-constant irreducible homogeneous polynomial F̂ ∈ K[X0, X1, X2] such that

Γ = V(F̂ ). Such F̂ is called the defining homogeneous polynomial of Γ.

We have an injection given by

i : A2(K) → P2(K), i(x, y) = ⟨1, x, y⟩ ,

from the affine plane to the projective plane. We identify A2(K) with its image under

i. Then A2(K) is the complement of the line X0 = 0 in P2(K). This line is called the

line at infinity of P2(K); the points of this line are called points at infinity, and the

points of A2(K) are called points at finite distance. For P = ⟨1, x, y⟩, we call (x, y) the
affine coordinates of P .
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Definition 1.2.3. Given an irreducible polynomial F ∈ K[X, Y ] with degF = d > 0,

we can define by

F̂ (X0, X1, X2) := Xd
0F

(
X1

X0

,
X2

X0

)
a homogeneous polynomial F̂ ∈ K[X0, X1, X2] with degF̂ = d. Such F̂ is called the

homogenization of F . Moreover, let C ⊂ A2(K) be an affine algebraic curve defining

by F , and let F̂ be its homogenization. The projective algebraic curve Γ = V(F̂ ) is

called the projective closure of C.

We can give the following description for F̂ . If F is of degree d > 0 and

F = F0 + F1 + · · ·+ Fd

where Fi is homogeneous of degree i, then

F̂ = Xd
0f0(X1, X2) +Xd−1

0 f1(X1, X2) + · · ·+X0Fd−1(X1, X2) + Fd(X1, X2).

Definition 1.2.4. For a homogeneous polynomial F̂ ∈ K[X0, X1, X2], we call the

polynomial F ∈ K[X, Y ] given by F (X, Y ) = F̂ (1, X, Y ) the dehomogenization of F̂ .

Definition 1.2.5. Let Γ ⊂ P2(K) be a projective algebraic curve defined by F̂ ∈
K[X0, X1, X2]. Let P = ⟨x0, x1, x2⟩ be a point on Γ. Then P is called a simple point

on Γ if and only if there is at least a λ ∈ {0, 1, 2} such that

∂F̂

∂Xλ

(P ) ̸= 0.

If P is not simple, then P is called a multiple point or singularity on Γ. Let m be a

number that for all i+ j + k < m the partial derivatives

∂i+j+kF̂

∂X0
i∂X1

j∂X2
k
(P )

vanish at P , but at least one of the partial derivatives of order m does not vanish at

P . Then m is called a multiplicity of P on Γ. An algebraic curve Γ is called a smooth

(or non-singular) curve if it has no singularity.

The genus of Γ can be computed by the following formula

g =
(d− 1)(d− 2)

2
−
∑
P∈S

δP , (1.2)

where d is the degree of Γ, δP is the delta invariant of the singular point P , and S is

the singular locus of the algebraic curve. If the singular point P is ordinary (i.e. the

tangents at this point are distinct, see [59, Chapter III]), then

δP =
mP (mP − 1)

2
,

where mP is the multiplicity of the singular point P .

11



Definition 1.2.6. The genus of an affine algebraic curve C = V(F ) is defined by the

genus of its projective closure Γ = V(F̂ ).

Remark 1.2.7. Formula (1.2) stands for the general case of singularities. If Γ has non-

ordinary singularities, by certain quadratic transformations (see [59, Chapter III]), one

can birationally transform Γ into a curve with only ordinary singularities, in which

the genus formula in [50, Theorem 3.6] can be used. For more details of the genus’s

computation, we refer the readers to [50, Chapter 3]. By using software, Maple may

help us to find the singularities as well as the genus of an irreducible algebraic curve.
> with(algcurves):

> F:=F(x,y);

> degree(F,{x,y})

> singularities(F,x,y) # find the singularities of F

> genus(F,x,y); # compute genus
> with(algcurves):

> G:=x^4+x^2y^2-y^2; # (see [59, page 83])

> degree(G,{x,y})

> 4

> singularities(G,x,y) # find the singularities of G

> [[0, 0, 1], 2, 2, 2],[[0, 1, 0], 2, 1, 2]

> # the first one is non-ordinary

> g=(4-1)*(4-2)/2-(2+1)=0

> genus(G,x,y); # compute genus

> 0

> H:=y^2-x^3-1;

> degree(H,{x,y})

> 3

> singularities(H,x,y) # find the singularities of H

> an empty set # H is a non-singular curve

> g=(3-1)*(3-2)/2=1

> genus(G,x,y); # compute genus

> 1
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1.3 Fields of algebraic functions of one variable

This section presents the concepts of fields of algebraic functions of one variable.

More details can be found in standard textbooks such as [8, 27].

Definition 1.3.1. [8, Page 2] Let K be an algebraic closed field of characteristic zero.

A field L ⊃ K is called a field of algebraic functions of one variable over K if it satisfies

the following condition: L contains an element x which is transcendental over K, and

L is algebraic of finite degree over K(x).

If there is no confusion, we may call such a field of algebraic functions of one

variable L by an algebraic function field or briefly a function field, see [27].

Definition 1.3.2. Let L be a field and K a subfield of L. A subring K ⊂ o ⊊ L is

called a valuation ring over K if it has the property that for any x ∈ L we have x ∈ o

or x−1 ∈ o. It K is determined, we call o a valuation ring.

Lemma 1.3.3. o is a local ring.

Definition 1.3.4. Let L be an algebraic function field over K. A subset p of L is

called a place in L if it is the ideal of non-units of some valuation ring o (over K) of L.

From [8, page 2], the valuation ring o is uniquely determined when p is given.

Since every element of o not in p is a unit in o, we see immediately that the residue

ring Σp = o/p is a field. This field is called the residue field of the place p.

Lemma 1.3.5. The valuation ring o of p contains an element t such that p = to and⋂∞
n=1 t

no = {0}.

By Lemma 1.3.5, if x ∈ L, there exists at least one integer n such that x ∈ tno.

In fact, if x ∈ o, we may take n = 0. If not, then x−1 is in o and is ̸= 0; therefore there

exists an m > 0 such that

x−1 ∈ tmo, x−1 /∈ tm+1o

which means that t−mx−1 is in o but not in to = p; i.e., t−mx−1 is a unit in o, and

x ∈ t−mo. If x ̸= 0, there is by assumption a largest integer n such that x ∈ tno; denote

by vp(x) this integer. If x, y are elements ̸= 0 in o, then

vp(x) + vp(y) = vp(xy) (1.3)

and, if x+ y ̸= 0, then

vp(x+ y) ≥ min{vp(x), vp(y)}. (1.4)
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To complete the definition of the function vp, we make the convention to write

vp(0) = ∞, where ∞ is a symbol with which we compute according to the following

rules: ∞ > n; ∞ + n = ∞ for every integer n; ∞ ≥ ∞; ∞ +∞ = ∞. Taking these

conventions into account, the formulas (1.3) and (1.4) are valid in every case.

The function vp is called the order function at the place p; if x ∈ L, then vp(x)

(i.e. ordp(x) in [27]) is called the order of x at p. The elements of p are the elements

whose orders are > 0, and the units of o are the elements of order 0. The elements t

for which to = p are the elements of order 1; they are also called local parameters. The

existence of places p and order functions vp are ensured by [8, Theorem 1, page 6] and

[8, Theorem 2, page 8], respectively.

Definition 1.3.6. Let p be a place of L. If an element x ∈ L belongs to p, then we

say that p is a zero of x; if x−1 ∈ p, then we say that p is a pole of x. Furthermore,

if there exists a value function vp at p, and vp(x) > 0, then we say that p is a zero of

order vp(x) of x, while, if vp(x) < 0, then we say that p is a pole of order −vp(x) of x.

Definition 1.3.7. Let x be an element of L for which p is not a pole. Then the residue

class of x modulo p (which is an element of the residue field Σp of p) will be called the

value taken by x at p. The value taken by x at p is denoted by x(p); it is clear that, if

neither x nor y has p as a pole, then

(x+ y)(p) = x(p) + y(p), (xy)(p) = x(p)y(p).

The elements which admit p as a zero are those which take the value 0 at p.

Remark 1.3.8. It is often convenient to say an element of L which has p as a pole

takes the value ∞ at p; ∞ is here a symbol which has no intrinsic connection with the

symbol ∞ which was used to complete the definition of the order function at a place.

Let L and E be two fields of algebraic functions of one variable such that L is a

subfield of E. From [28, Chapter VII], E is an algebraic finite extension of L, and if o

is a valuation ring in L with maximal ideal p, then there exists a valuation ring D in

E, with prime B, such that o = D∩L and p = B∩L. We say that the pair (D,B)

lies above (o, p), or more briefly that B lies above p. By [28, ChapterXII, Corollary

4.5], if o is a valuation ring, then so is D. Therefore, ΣB = D/B and Σp = o/p are

residue fields, and Σp can be seen as a subfield of ΣB. If ΣB is algebraic of finite

degree over Σp then we say that [ΣB : Σp] is the relative degree of B. Let vB and vp

are the value functions at the places B and p respectively. If u is a local parameter

of B, then tD = ueD, and e is called the ramification index of D over o. It is clear

that vB(x) = evp(x) for all x ∈ L. We say that (D,B) is unramified above (o, p), if

the ramification index e is equal to 1.
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Theorem 1.3.9. [8, Theorem 1, page 52] Let L and E be fields of algebraic functions

of one variable such that E contains L as a subfield. If p is a place of L, then there

exists at least one place of E which lies above p, and there exist only a finite number

of such places, say B1, · · · ,Bh. If E is of finite degree over L, the relative degrees

d1, · · · , dh of B1, · · · ,Bh are finite, and we have

[E : L] =
h∑

i=1

diei,

where ei is the ramification index of Bi with respect to L.

Let L be a field of algebraic functions of one variable over K.

Proposition 1.3.10. ([27, Proposition 1.2]) If o1 and o2 are two valuation rings with

quotient field L, such that o1 ⊂ o2, then o1 = o2.

By a point of L over K, we shall mean a valuation ring o of L. By Proposition

1.3.10 the valuation rings oi (i = 1, . . . , n) of L are distinct and have no inclusion

relations. The set of all points of L will be called a curve, denoted by C, whose

function field is L. We use the letters P,Q for points of the curve C.

Definition 1.3.11. A divisor (on the curve C, or of L over K) is an element of the

free abelian group generated by the points. Thus a divisor is a formal sum

a =
∑
P∈K

nPP

where P are points, and nP are integers, all but a finite number of which are 0. We

call
∑
nP the degree of a, and nP the order of a at P .

If x ∈ L\{0}, there is only a finite number of points P such that

ordP (x) := vp(x) ̸= 0.

Indeed by the formulas (1.3) and (1.4), if x is constant, then ordP (x) = 0 for all P. If

x is not constant, then there is one point of K(x) at which x has a zero, and one point

at which x has a pole. Each of these points extends to only a finite number of points of

L, which is a finite extension of K(x). Hence we can associate a divisor with x, namely

(x) =
∑

ordP (x) ̸=0

nPP,

where nP = ordP (x). If a =
∑
nPP and b =

∑
mPP are divisors, we write a ≥ b if

and only if nP ≥ mP for all P . We call a positive if a ≥ 0.
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If a is a divisor, we denote by L(a) the set of all elements x ∈ L such that

(x) ≥ −a. If a is a positive divisor, then L(a) consists of all the functions in L which

have poles only in a, with multiplicities at most those of a. Since

ordP (x+ y) ≥ min{ordP (x), ordP (y)}

and

ordP (λx) = ordP (x)

for all P and λ ∈ K, it is clear that L(a) is a vector space over K, see Lemma 1.3.12.

Lemma 1.3.12. L(a) is a vector space over the field K for any divisor a. Let l(a) be

the dimension of L(a). If a ≥ b then L(a) ⊆ L(a) and l(b) ≤ l(a).

Let P be a point of C and o be its local ring of L. Let p be its maximal ideal.

Since K is algebraically closed, Σp = o/p is canonically isomorphic to K. Let t be a

generator (i.e. local parameter) of p and x be an element of o. Then for some constant

a0 ∈ K, we can write

x ≡ a0 mod p.

The function (x− a0) is in p, and it has a zero in o. We can therefore write

x− a0 = ty0, where y0 ∈ o.

Again by a similar argument we get y0 = a1 + ty1 with y1 ∈ o, and

x = a0 + a1t+ y1t
2.

Continuing this procedure, we obtain an expansion of x into a power series,

x = a0 + a1t+ a2t
2 + · · · .

It is trivial that if each coefficient ai is equal to 0, then x = 0. The quotient field L of

o can be embedded in the power series field K((t)) (see [8,59]) as follows. If x is in L,

then for some power ts, the function tsx lies in o, and hence x can be written

x =
as
ts

+
as−1

ts−1
+ · · · a−1

t
+ a0 + a1t+ · · · .

If u is another generator of p, then clearly K((t)) = K((u)), and our power series field

depends only on P. We denote it by LP . An element ξP ∈ LP can be written

ξP =
∞∑

v=m

avt
v

with am ̸= 0. If m < 0, we say that ξP has a pole of order −m. If m > 0 we say that

ξP has a zero of order m, and we let m = ordP (ξP ).
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Lemma 1.3.13. For any divisor a and any point P , we have l(a) is finite and

l(a+ P ) ≤ l(a) + 1.

Let A∗ be the cartesian product of all LP , taken over all points P. An element of

A∗ can be viewed as an infinite vector ξ = (. . . , ξP , . . .) where ξP ∈ LP . The selection

of such an element in A∗ means that a random power series has been selected at each

point P. Under component wise addition and multiplication, A∗ is a ring. Let subring

A of A∗ consisting of all vectors such that ξP has no pole at P for all but a finite

number of P. This ring A will be called the ring of adeles. Note that the function field

L is embedded in A under the mapping

x→ (. . . , x, x, x, . . .),

i.e., at the P -component we take x viewed as a power series in LP .

Let a be a divisor. We shall denote by Λ(a) the subset of A consisting of all

adeles ξ such that

ordP (ξP ) ≥ −ordP (a).

Then Λ(a) is immediately seen to be a K-subspace of A since

ordP (ξP + ηP ) ≥ min(ordP (ξP ), ordP (ηP )) ≥ −ordP (a),

and

ordP (λξP ) = ordP (ξP ) ≥ −ordP (a),∀λ ∈ k.

The set of functions x ∈ L such that (x) ≥ −a is the vector space L(a), and is

immediately seen to be equal to Λ(a) ∩ L. If B and C are two K-subspaces of A, and

B ⊃ C, then we denote by (B : C) the dimension of the factor space B mod C over K.

Proposition 1.3.14. Let a and b be two divisors. Then Λ(a) ⊃ Λ(b) if and only if

a ≥ b. If this is the case, then

1. (Λ(a) : Λ(b)) = deg(a)− deg(b), and

2. (Λ(a) : Λ(b)) = ((Λ(a) + L) : (Λ(b) + L)) + ((Λ(a) ∩ L) : (Λ(b) ∩ L)).

From Proposition 1.3.14, we get the fundamental formula:

deg(a)− deg(b) = (Λ(a) + L : Λ(b) + L) + l(a)− l(b) (1.5)

for two divisors a and b such that a ≥ b.
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Definition 1.3.15. Divisors a and b are said to be linearly equivalent if a − b is the

divisor of a function. A function depending only on linear equivalence will be called a

class function.

Lemma 1.3.16. Both deg(a) and l(a) are class functions.

By Lemma 1.3.16, the new function defining by

r(a) = deg(a)− l(a)

is a class function. We need to prove r(a) is bound for any divisor a.

Proposition 1.3.17. For any divisor a, the integer r(a) is bound. Moreover, there

exists a divisor a such that A = Λ(a) + L.

This result allows us to split the index in (1.5). We denote the dimension of

(A : Λ(a) + L) by δ(a), which is finite by Proposition 1.3.17, and (1.5) becomes

deg(a)− deg(b) = δ(b)− δ(a) + l(a)− l(b) (1.6)

or in other words

l(a)− deg(a)− δ(a) = l(b)− deg(b)− δ(b). (1.7)

This holds for a ≥ b. However, since two divisors have a sup, (1.7) holds for any two

divisors a and b. By (1.7), we have the following definition.

Definition 1.3.18. The genus of L is defined to be that integer g such that

l(a)− deg(a)− δ(a) = 1− g.

By the formula (1.7), g is an invariant of L. Putting a = 0, we obtain g = δ(0).

Hence g = (A : Λ(0)+L), which is an integer ≥ 0. Finally, we have the following result.

Definition 1.3.19. There exists an integer g ≥ 0 depending only on L such that for

any divisor a we have

l(a) = deg(a) + 1− g + δ(a), δ(a) ≥ 0.

The following formula compares the genus of a finite extension, in terms of the

ramification indices. The details of its proof can be found in [27, page 27].
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Theorem 1.3.20. (The Genus Formula of Hurwitz) Let K be an algebraically closed

field, and let L be a function field with K as constant field. Let E be a finite separable

extension of L of degree n. Let gE and gL be the genera of E and L respectively. For

each point P of L, and each point Q of E above P, assume that the ramification index

eQ is prime to the characteristic of K. Then

2gE − 2 = n(2gL − 2) +
∑
Q

(eQ − 1). (1.8)

We conclude this section by giving two well-known models of fields of algebraic

functions which can be easily found in literature, for instance see [8, 26]. First, we are

going to investigate the places (and also the valuation rings) of K(x). From that, we

can see something occurring in a field of algebraic functions L since it is algebraic of

finite degree over K(x).

Example 1.3.21. Let K be an algebraically closed field and x transcendental over K.

Let a ∈ K and let oa be the set of rational functions

oa =

{
f(x)

g(x)
| f(x), g(x) ∈ K[x], g(a) ̸= 0

}
.

Then oa is a valuation ring, whose maximal ideal pa consists of all such quotients such

that f(a) = 0. Let o be a discrete valuation ring in K(x) containing K, and p be its

maximal ideal. Then p∩K[x] ̸= 0, and p∩K[x] is therefore generated by an irreducible

polynomial p(x), which must be of degree 1 since we assumed K algebraically closed.

Thus p(x) = x− a for some a ∈ K. Then it is clear that the canonical map

o → o/p

induces the map

f(x) → f(a)

on polynomials, and it follows that o consists of all quotients
f(x)

g(x)
such that g(a) ̸= 0.

Hence, such o is of the form oa and p = pa = (x− a)oa. Clearly that pa ̸= pb if a ̸= b.

Let x∗ = x−1, then K(x) = K(x∗). We denote p1/x for the place of x∗ and o1/x is

the ring of this place. Then p1/x is distinct from all the place pa above since x ∈ oa

but x /∈ o1/x. Since o1/x does not correspond with an element a ∈ K, we can say

it is valuation ring of the infinitive point. Finally, the set of oa and o1/x exhaust all

valuation rings of K(x).

Theorem 1.3.22. Let K be an algebraically closed field and L be a field of algebraic

functions of one variable over K, then L has genus zero if an only if L = K(x).
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Theorem 1.3.23. Let L = K(x, y) where y satisfies the equation

y2 = f(x), (1.9)

and f(x) is a polynomial of degree n, with distinct roots. Then the genus of L is[
n− 1

2

]
.

Such L is called hyperelliptic function field.

Proof. Let

f(x) =
n∏

i=1

(x− ai),

where the elements ai are distinct. By classified as in Example 1.3.21, all points P of

K(x) correspond with the set of valuation rings oa (where a ∈ K), and the infinity

point ∞ corresponds with o1/x. Since (x − a) is a unit when we consider at point Pi

which corresponds with (x − ai), then L is unramified over K(x) at all points except

the points Pi (corresponding to x = ai), and also possibly at those points lying above

x = ∞. At Pi the ramification index is 2. Let t = 1/x so that t has order 1 at ∞ in

K(x). We write

f(x) =
n∏

i=1

t−n(1− tai).

Since
∏n

i=1(1 − tai) is a unit when we consider at t, then f(x) has a pole of order n

at t ∈ K(t). That means f(x) has a zero of order n at the infinity point ∞ of k(x).

By Theorem 1.3.22, K(x) has genus zero. If n is odd, by equation (1.9), K(x, y) is

ramified of order 2 at infinity and the Hurwitz genus formula yields

2gL − 2 = 2(2 · 0− 2) +
n∑

i=1

(2− 1) + (2− 1) = n− 3,

which follows

gL =
n− 1

2
.

If n is even, then the ramification index at infinity is 1 and the Hurwitz formula yields

gL =
n− 2

2
.

The proof is complete.
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1.4 Rational functions on algebraic curves

In this section, we introduce the models of fields of algebraic functions related to

projective algebraic curves.

Definition 1.4.1. The field of rational functions on P2(K) is the set of all quotients

ϕ

ψ
∈ K(X0, X1, X2),

where ϕ, ψ ∈ K[X0, X1, X2] are relatively prime, homogeneous of the same degree,

ψ ̸= 0. Such a fraction
ϕ

ψ
gives a function r that vanishes on V(ϕ) as follows

r : P2(K)\V(ψ) → K (P → ϕ(P )

ψ(P )
).

We call r a rational function on the projective plane whose domain of definition Def(r)

is P2(K)\V(ψ). We call ψ the pole divisor and ϕ the zero divisor of the rational

function r. We shall write R(P2) for the field of rational functions on P2(K). The field

K is embedded into R(P2) as the field of constant functions.

Definition 1.4.2. For P ∈ P2(K), we denote OP by

OP =

{
ϕ

ψ
∈ R(P2) | ψ(P ) ̸= 0

}
.

We call OP the local ring of P on P2(K). The maximal ideal of OP is

mP =

{
ϕ

ψ
∈ OP | ϕ(P ) = 0

}
.

Lemma 1.4.3. ([26, Lemma 4.1]) Dehomogenization gives a K-isomorphism

ρ : R(P2)
≃−→ K(X, Y )

(
ϕ

ψ
→ ϕ(1, X, Y )

ψ(1, X, Y )

)
.

Let P = (a, b) be a point at finite distance and MP = (X − a, Y − b) be its maximal

ideal in K[X, Y ], then ρ induces a K-isomorphism

OP
≃−→ K[X, Y ]MP

onto the localization of K[X, Y ] with respect to MP .

The elements of K(X, Y ) can be treated of as functions on A2(K), and ρ assigns

to each rational function on P2(K) its restriction to A2(K). We call R(A2) = K(X, Y )
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the field of rational functions on A2(K). Let F̂ be defining homogeneous polynomial

of a projective curve Γ ⊂ P2(K) of positive degree. Then

OF̂ :=

{
ϕ

ψ
∈ R(P2) | F̂ and ψ are relatively prime

}
is a subring of R(P2) and

IF̂ :=

{
ϕ

ψ
∈ R(P2) | ϕ ∈

〈
F̂
〉}

is an ideal of OF̂ . The ring OF̂ consists of precisely rational functions that are defined

on V(F̂ ) up to a finite set of exceptions and IF̂ consists of the functions that vanishing

on V(F̂ ).

Definition 1.4.4. The residue class ring

R(F̂ ) := OF̂/IF̂

is called the ring of rational functions on F̂ (i.e. on Γ).

Definition 1.4.5. We call two following residue class rings

K[F ] := K[X, Y ]/(F ) and K[F̂ ] := K[X0, X1, X2]/(F̂ )

the affine coordinate ring of F and projective coordinate ring of F̂ , respectively.

Theorem 1.4.6 follows from [26, Theorem 4.4] and [26, Corollary 4.6].

Theorem 1.4.6. Suppose that F̂ is an irreducible homogeneous polynomial of positive

degree in K[X0, X1, X2] and F is the affine curve associated with F̂ ; suppose that K[F ]

is its coordinate ring, and Q(K[F ]) is the full ring of quotients of K[F ]. Then the

followings hold.

1. R(F̂ ) is a field.

2. There is a K−isomorphism R(F̂ )
≃−→ Q(K[F ]). This follows the ring Q(K[F ])

is also a field.

3. If x and y denote the residue classes of X and Y in K[F ], then

R(F̂ )
≃−→ K(x, y).

In this case x (without loss of generality) is transcendental over K, and R(F̂ ) is

a separable algebraic extension of K(x).
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Remark 1.4.7. From Theorem 1.4.6, every field of algebraic functions of one variable L

(Definition 1.3.1) is K−isomorphic to the field R(F̂ ) of rational functions of a suitably

chosen irreducible algebraic curve Γ = V(F̂ ). Such Γ is called a projective curve model

of L. From [26, Chapter 14], if Γ is smooth, then the genus of Γ is equal to the genus

of R(F̂ ). In addition, the genus of R(F̂ ) is of zero if and only if so is the genus of Γ.

Example 1.4.8. The Fermat curve Γ defined by

F̂ = Xn
1 +Xn

2 −Xn
0 , n ≥ 3

is a smooth curve since it has no singularity. The genus of Γ is

g(Γ) =
(n− 1)(n− 2)

2
.

Let F be the dehomogenization of F̂ as follows

F (X, Y ) = F̂ (1, X, Y ) = Xn + Y n − 1,

then it is the defining polynomial of the Fermat curve C in the affine plane. A field of

algebraic functions L over K with an affine curve model C is isomorphic to R(F̂ ). In

this case, the genus of R(F̂ ) is equal to g(Γ).

Example 1.4.9. A function field L is called hyperelliptic if it has as a model an affine

curve with equation

F := Y 2 − P (X),

where P (X) ∈ K[X] is a polynomial of degree n ≥ 3 with distinct roots. We call the

projective closure Γ defined by F̂ a hyperelliptic curve. By Theorem 1.3.23

gL =


n

2
− 1 if n is even;

n− 1

2
if n is odd.

If n = 3, then L is an elliptic function field which has genus one. In this case, Γ is a

non-singular curve. We note that, if n ≥ 4, then Γ is not a smooth curve (non-singular).

In fact, if it is the case then by Theorem 1.4.6, we have the following contradiction[
n− 1

2

]
=

(n− 1)(n− 2)

2
, n ≥ 4.

Hence, Γ is not a smooth curve. However, from the computation in [17, Chapter 10],

g(Γ) is equal to gL.
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1.5 Preparation

This section prepares some main tools which are regularly used in the dissertation.

Definition 1.5.1. Let F (y, y′) = 0 be a first-order AODE over K. The algebraic curve

F (y, w) = 0 where F (y, w) ∈ K[y, w] is said to be the corresponding algebraic curve of

the AODE F (y, y′) = 0.

By Definition 1.5.1, we may consider a first-order AODE via an algebraic curve.

From that, some important concepts related to algebraic curves such as associated

fields of algebraic functions and rational parametrizations (of algebraic curves of genus

zero) are introduced in Section 1.5.1 and Section 1.5.2, respectively.

1.5.1 Associated fields of algebraic functions

Due to Theorem 1.4.6 and Remark 1.4.7, Definition 1.5.2 gives a connection

between an affine algebraic curve and a field of algebraic functions in Section 1.3.

Definition 1.5.2. Assume that L is a field of algebraic functions overK, then there are

η, ξ ∈ L such that L = K(η, ξ), where η is transcendental over K and ξ is algebraic over

K(η). The function field L = K(η, ξ) is called an associated field of algebraic functions

of the affine algebraic curve C defined by irreducible polynomial F if F (η, ξ) = 0. Such

C is called the affine algebraic curve model of the function field L.

Lemma 1.5.3 has an intrinsic role for the problems of solving first-order AODEs

of genus zero considered in Chapter 3 and Section 4.1.

Lemma 1.5.3. [37, Lemma 2.7] If η is a solution of the AODE F (y, y′) = 0 which is

transcendental over K, then K(η, η′) is an associated field of algebraic functions of the

corresponding algebraic curve C defined by F (y, w). In addition, if C is of genus zero

then its associated field of algebraic functions K(η, η′) is of the form K(t).

Proof. From Definition 1.5.2, if η is a transcendental solution (not necessary liouvillian)

over K of F (y, y′) = 0 then K(η, η′) is an associated field of algebraic functions of C.
Moreover, C has genus zero means that its projective closure Γ defined by F̂ is of

genus zero, see Definition 1.2.6. From Theorem 1.4.6 and Remark 1.4.7, then the field

K(η, η′) is of genus zero. From Theorem 1.3.22, K(η, η′) is of the form K(t).

Remark 1.5.4. The associated fields of algebraic functions in Lemma 1.5.3 have been

studied in [23, 30, 31]. In a special case, if K = Q, then they coincide with the ones

considered in [1, Definition 3.2].
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1.5.2 Rational parametrizations

Definition 1.5.5. A rational parametrization of an algebraic curve C defined by an

irreducible polynomial F (y, w) is a pair of rational functions P(t) = (r(t), s(t)) ∈ K(t)2

such that the two following items hold.

1. For almost all t0 the point P(t0) = (r(t0), s(t0)) ∈ C.

2. For almost all point (x0, y0) ∈ C there exists t0 ∈ K such that P(t0) = (x0, y0).

An algebraic curve C is said to be rational or a rational curve if it admits a rational

parametrization P(t). Moreover, if t0 is unique then such P(t) is said to be proper or

a proper parametrization of C.

Lemma 1.5.6. ([50, Lemma 4.13]) Every rational curve can be properly parametrized.

Theorem 1.5.7. [50, Theorem 4.14] Let P(t) = (r(t), s(t)) be a rational parametriza-

tion of an algebraic curve C defined by F (y, w) = 0. Then, the following statements

are equivalent:

1. P(t) = (r(t), s(t)) is proper.

2. K(P(t)) = K(t).

The following lemma gives a relation between two different parametrizations of

an algebraic curve of genus zero.

Lemma 1.5.8. ([50, Lemma 4.17]) Let P(t) be a proper parametrization of a rational

curve C, and P̃(t) is any rational parametrization of C. Then there is a non-constant

rational function φ(t) ∈ K(t) such that P̃(t) = P(φ(t)). Moreover, P̃(t) is a proper

parametrization if and only if there is a linear function φ(t) =
at+ b

ct+ d
∈ K(t) such that

P̃(t) = P(φ(t)).

Finally, Theorem 1.5.9 shows that only algebraic curves of genus zero are rational.

Theorem 1.5.9. [50, Theorem 4.63] An algebraic curve is rational if and only if its

genus is equal to zero.

Conclusion

In this chapter, we introduce the terminologies and the main tools which are used

in the dissertation. In addition, we try to outline their chemistry as far as we can. We

hope this may provide the readers the essential information when reading the text.
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Chapter 2

Rational liouvillian solutions of

first-order autonomous AODEs

The content of this chapter is mainly based on the author’s works in [35]. In

this chapter, we study rational liouvillian general solutions of first-order autonomous

AODEs

F (y, y′) = 0, (2.1)

where F (y, w) ∈ C[y, w] is an irreducible polynomial. We define rational liouvillian

solutions by using the criterion of liouvillian solution in [56] and then tailor the method

of Feng and Gao in [14] to the case of finding rational liouvillian solutions of first-

order AODEs (2.1). Such a rational liouvillian solution induces a rational proper

parametrization. This follows the necessary and sufficient conditions of such differential

equation for having a rational liouvillian solution over C. The results turn out to be

an algorithm for determining a rational liouvillian solution the AODE (2.1).

This chapter is organized as follows. In Section 2.1, we present the main idea in

[14] for determining rational general solutions of the AODE (2.1), and we also introduce

its extension cases for finding algebraic and radical general solutions, see [1] and [18],

respectively. In Section 2.2, we define rational liouvillian solutions and separate them

from others. Section 2.3 gives necessary and sufficient conditions for the AODE (2.1)

having a non-constant rational liouvillian solution. An algorithm and some examples

are presented in Section 2.4.
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2.1 Solving first-order AODEs by parametrizations

The general idea of the method which is called the algebro-geometric method is

to associate first-order AODEs to geometry objects, i.e. algebraic curves or algebraic

surfaces, then use their geometric properties which also satisfy the derivative constrain

to deduce the solutions of the original differential equations. There are notable works

(not exhausted) in the method such as [14, 33, 57]. A summarization of more aspects

of the algebro-geometric method can be found in [12]. In this section, we present the

method of [14] and the ideas of [1] for solving first-order autonomous AODEs.

First, we recall the method in [14] for finding rational general solution of a first-

order autonomous AODE (2.1). The idea is to associate such AODE to an algebraic

curve defined by an irreducible polynomial F (y, w) ∈ Q[y, w], see Definition 1.5.1,

and then use the rational parametrizations of the algebraic curve which satisfies the

derivative constrain to find a rational general solution.

Definition 2.1.1. ([14, Definition 1]) A rational solution of the AODE (2.1) is defined

as a solution (see Chapter 1) of such AODE of the form

y(x) =
anx

n + an−1x
n−1 + · · ·+ a1x+ a0

bmxm + bm−1xm−1 + · · ·+ b1x+ b0
, (2.2)

where m,n ∈ N, ai, bj are in a universal constant extension of Q. It is called a non-

trivial solution if degx y(x) > 0.

Lemma 2.1.2. ([14, Lemma 4]) Assume that a first-order AODE (2.1) has a non-

trivial rational solution

y(x) =
anx

n + an−1x
n−1 + · · ·+ a1x+ a0

bmxm + bm−1xm−1 + · · ·+ b1x+ b0
, (2.3)

where m,n ∈ N, ai, bj ∈ Q, an ̸= 0. Then y(x+c) is a general solution of the differential

equation (2.1) for an arbitrary constant c.

If y(x) is a non-trivial rational solution of the AODE (2.1), then the pair

(y(x), y′(x))

can be regarded as a rational parametrization of the algebraic curve F (y, w) = 0. The

following theorem shows that such parametrization is proper, see Theorem 1.5.7.

Theorem 2.1.3. ([14, Theorem 2]) Assume that the differential equation (2.1) has a

non-trivial rational solution y(x). Then Q̄(y(x), y′(x)) = Q̄(x).
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There is a criterion for the AODE (2.1) having a rational general solution.

Theorem 2.1.4. ([14, Theorem 5]) Let y = r(x), w = s(x) be a proper parametrization

of F (y, w) = 0, where r(x), s(x) ∈ Q̄(x). Then F = 0 has a rational general solution if

and only if

ar′(x) = s(x) or a(x− b)2r′(x) = s(x) (2.4)

where a, b ∈ Q̄ and a ̸= 0. If one of the above relations is true, then replacing x by

a(x+ c) (or b− 1

a(x+ c)
) in y = r(x), we obtain a rational general solution of F = 0,

where c is an arbitrary constant.

Proof. Let y = q(x) be a non-trivial rational solution of F = 0. From Theorem 2.1.3,

(q(x), q′(x)) is also a proper parametrization of F (y, w) = 0. By Lemma 1.5.8, there is

φ(x) =
c1x+ c2
c3x+ c4

, c1c4 − c2c3 ̸= 0

such that

q(x) = r(φ(x))

q′(x) = s(φ(x)) = (r(φ(x)))′ = r′(φ(x))φ′(x).
(2.5)

If c3 = 0 then φ(x) =
c1x+ c2

c4
. This implies φ′(x) =

c1
c4
. From (2.5), we obtain

s(φ(x)) = ar′(φ(x)), where a =
c1
c4
. If c3 ̸= 0, then

φ′(x) =
c1c4 − c2c3
(c3x+ c4)2

.

By replacing

x =
1

(c1c4 − c2c3)

c4φ(x)− c2
−c3φ(x) + c4

we obtain

φ′(x) =
c23(φ(x)− c1/c3)

2

c1c4 − c2c3
.

Also from (2.5), we have

s(φ(x)) = a(φ(x)− b)2r′(φ(x)),

where a =
c23

c1c4 − c2c3
and b = c1/c3. In both cases, we obtain a rational solution of

F = 0, which is q(x) = r(φ(x)). From Lemma 2.1.2, the rational general solution of

F = 0 is q(x+ c). If the condition (2.4) holds, the reverse is easy to follow. In fact, let

q(x) = r(φ(x)), then from (2.5) we have

q′(x) = (r(φ(x)))′ = s(φ(x)),

which follows that F (q(x), q′(x)) = 0. Hence, q(x) is a rational solution of F = 0.
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These results lead to an algorithm, i.e. [14, Algorithm 1], for finding a rational

general solution of a first-order autonomous AODE. In addition, we give an example

to illustrate how the algorithm works.

Algorithm RatSol

Input: An algebraic curve F (y, w) = 0 over Q.

Output: A rational general solution of F (y, y′) = 0 if any.

1. If the algebraic curve F (y, w) = 0 is not rational, then return “F (y, y′) = 0 has

no rational general solutions”.

2. Else, compute a proper parametrization (r(x), s(x)) of F (y, w) = 0.

3. Let A =
s(x)

r′(x)
.

(a) If A = a ∈ Q, substituting x by a(x+ c) in r(x), then F (y, y′) = 0 has a

rational general solution y = r(a(x+ c)).

(b) If A = a(x − b)2 for a, b ∈ Q, substituting x by
ab(x+ c)− 1

a(x+ c)
in r(x),

then F (y, y′) = 0 has a rational general solution y = r(
ab(x+ c)− 1

a(x+ c)
).

(c) Otherwise, by Theorem 2.1.4, the algorithm terminates, then return

“F (y, y′) = 0 has no rational general solutions”.

Remark 2.1.5. Algorithm RatSol depends on the rational parametrizations of a plane

algebraic curve, which is computationally difficult in the early years of 2000s. Noting

that the problem of finding rational parametrizations of an algebraic curve has been

solved completely, see [50], and now with the helping of Maple, the algorithm can be

easily processed. By Theorem 2.1.3 and Lemma 1.5.8, the rational general solution of

the form r(x) in Theorem 2.1.4 covers all of the rational general solutions of the AODE

(2.1), hence, Algorithm RatSol is complete.

Example 2.1.6. (see [14, Example 1]) Consider first-order autonomous AODE

F (y, y′) = y′3 + 4y′2 + (27y2 + 4)y′ + 27y4 + 4y2 = 0.

By Maple, the corresponding curve F (y, w) = 0 has a proper parametrization

(r(x), s(x)) =

(
−4x2 − 64

x3
,
−16x2 − 768

x4

)
.
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We obtain
s(x)

r′(x)
= −4, then a = −4 and b = 0. From Theorem 2.1.4,

y = r(−4(x+ c)) =
(x+ c)2 + 1

(x+ c)3

is a rational general solution of the given differential equation.

Remark 2.1.7. Above results have shown that the rational general solution of the

autonomous AODE (2.1) can not be found outside such autonomous AODEs of genus

zero. This situation is not true in the case of determining rational general solutions of

a first-order non-autonomous AODE, see [57, Section 3]. There are slight differences

between a strong rational general solution in [57, Definition 3.3] and a rational general

solution in the sense of Ritt [43], see also Definition 2.1.1. If a first-order AODE is

parametrizable, see [57, Definition 3.2], i.e. the corresponding algebraic curve has genus

zero, then such general solutions are coincided. Hence, the rational general solutions

considered in [7, 33] are strong. In Section 4.1, we recall and tailor the approach of

[7, 57] for finding liouvillian solutions of first-order AODEs of genus zero.

In this part, we present main idea of the approach in Aroca et al. [1] for finding a

non-constant algebraic solution ξ of the first-order autonomous AODE (2.1) based on

the method of [14]. In stead of using global parametrizations, they process with local

parametrizations respect to a given tuple, see [59]. From [1, Lemma 2.4], if G(x, y)

is an irreducible annihilating polynomial of ξ, then all root y = y(x) of the algebraic

equation G(x, y) = 0 are solutions of the differential equation. By abuse of notation,

G(x, y) = 0 is sometimes called a solution. The following lemma gives a form of an

algebraic general solution.

Lemma 2.1.8. ([1, Lemma 3.1]) Let G(x, y) = 0 be an algebraic solution of the AODE

F (y, y′) = 0 (2.1). Then G(x+ c, y) = 0 is an algebraic general solution of such AODE

(2.1), where c is an arbitrary constant.

From [1], if the AODE (2.1) has a non-constant algebraic solution, then all its

solutions are algebraic. Lemma 2.1.9 shows that the genus of the AODE (2.1) is equal

to the genus of its algebraic solutions.

Lemma 2.1.9. ([1, Lemma 3.5]) Assume that G(x, y) = 0 is an algebraic solution of

the first-order AODE (2.1). Then the genus of G(x, y) = 0 is equal to the genus of the

corresponding algebraic curve F (y, w) = 0.

Proof. Let η satisfy G(x, η) = 0. Then η is transcendental over Q. Then Q(x, η) and

Q(η, η′) are the associated algebraic function fields of G(x, η) = 0 and F (y, w) = 0,
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respectively. Therefore, we only need to prove the two function fields are equal. From

Theorem 2.1.11, we have

[Q(x, η) : Q(η)] = [Q(η, η′) : Q(η)].

Since G(x, η) = 0, it follows that

η′ = −∂G
∂x

(x, η)/
∂G

∂y
(x, η).

This yields η′ ∈ Q(x, η). Hence

Q(x, η) = Q(η, η′). (2.6)

From (2.6), we observe that G(x, y) = 0 and F (y, w) = 0 are two birational curves.

Due to [59, Chapter VI], their genus are equal.

Remark 2.1.10. If a first-order AODE (2.1) is of genus zero, then its algebraic general

solution is also too. In this case, the associated algebraic function field is of genus zero.

This aspect is applied for finding algebraic solutions in Section 3.2.

Assume that G(x, y) = 0 is a non-constant algebraic solution of (2.1). Then its

degree will be bounded by Theorem 2.1.11 and Theorem 2.1.12.

Theorem 2.1.11. ([1, Theorem 3.4]) Let G(x, y) ∈ Q[x, y] be an irreducible polynomial

and G(x, y) = 0 is an algebraic solution of the first-order AODE (2.1). Then we have

degxG = degw F.

Theorem 2.1.12. ([1, Theorem 3.8]) Assume that G(x, y) = 0 is a non-constant

algebraic solution of the AODE (2.1). Then we have

degy G ≤ degy F + degw F.

Remark 2.1.13. From above results, in next steps, they build a formal power series

solution ξ in N terms, for instance see [1, Algorithm 4.3], generated from a point in

the corresponding algebraic curve (local parametrization). By [1, Algorithm 4.4], if ξ is

an algebraic solution of (2.1) then its irreducible annihilating polynomial G(x, y) must

satisfy Theorem 2.1.11 and Theorem 2.1.12. Finally, the implicit form G(x, y) = 0

can be determined by solving a linear system. Since there is a bound of G(x, y) with

respect to a certain AODE (2.1), then [1, Algorithm 4.4] terminates after finite steps.

If this algorithm can not return an algebraic solution, then the AODE (2.1) has no

algebraic general solution.
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We give some details for a special case of algebraic solutions, i.e. radical solutions.

Definition 2.1.14. ([48, Definition 2.1]) Let K be an algebraically closed field of

characteristic zero. A radical tower over K(x) is a tower of field extension

K(x) = E0 ⊆ E1 ⊆ E2 ⊆ . . . ⊆ Em

such that for all i ∈ {1, . . . ,m},

Ei = Ei−1(ti) = E0(t1, t2, . . . , ti) with t
ni
i = αi ∈ Ei−1, ni ∈ N.

A field E is called a radical extension field of K(x) if there is a radical tower over K(x)

with E as its last element.

Definition 2.1.15. Let E be a radical extension field of K(x). An element y(x) ∈ E is

called a radical function over K(x) (briefly, radical function). If such y(x) is a general

solution of a first-order AODE (2.1) then we call it a radical general solution.

Remark 2.1.16. If y(x) is a radical solution of a first-order AODE (2.1), then it is

also an algebraic solution. From Lemma 2.1.8, y(x + c) is a radical general solution.

Since K(x) is a radical tower over its self then a rational function in K(x) can be seen

as a radical one. This follows a rational general solution of the AODE (2.1) is also a

radical general solution. Moreover, there is a procedure (i.e. [18, PROCEDURE 1])

for finding radical solutions of the AODE (2.1) which extends the method of [14] with

respect to radical parametrizations (i.e. similar to rational parametrizations but each

of these two components are in E), see Example 2.4.11 for an illustration.

2.2 Rational liouvillian solutions

In this section, we define rational liouvillian solutions of first-order autonomous

AODEs and show how they differ from the others. First, we recall the result in [56]

which has an important role on our method.

Proposition 2.2.1. ([56, Proposition 3.1]) Let C be an algebraically closed field of

characteristic zero (a complex field, in this dissertation) with the standard derivation

and let R(X) ∈ C(X) be a nonzero element. The differential equation

y′ = R(y) (2.7)

has a non-constant solution y which is liouvillian over C if and only if there is an

element z ∈ C(y) such that
1

R(y)
is of the form

∂z

∂y
or

∂z
∂y

az
for some a ∈ C\0.
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Proof. Let y be a non-constant liouvillian solution of differential equation (2.7). Then

y is transcendental over C and y′ ∈ C(y). That means C(y, y′) is a differential field.

For z ∈ C(y), we have

z′ = y′
∂z

∂y
. (2.8)

If z′ = 0, then
∂z

∂y
= 0 since the field of constants of C(y) with the derivation

∂

∂y
equals C, we obtain that z ∈ C. Since y is liouvillian, the differential field C(y) is

contained in some liouvillian extension field of C. By [56, Theorem 2.2], there exists

an element z ∈ C(y)\C such that either z′ = 1 or z′ = az for some non-zero a ∈ C.
It follows immediately from the equation (2.7) that 1/R(y) has the desired form. In

the inverse, let y′ = R(y) and 1/R(y) be equal to
∂z

∂y
or

∂z
∂y

az
for some z ∈ C(y) and for

some non-zero a ∈ C. From (2.8), we obtain z′ = 1 or z′ = az. From the fact that

C(z) ⊆ C(y), it follows that y is algebraic over the liouvillian extension C(z) of C and

thus C(y) is a liouvillian extension of C.

Proposition 2.2.1 suggests the following definition.

Definition 2.2.2. [35, Definition 2.7] Let E be a liouvillian extension of C, and t ∈
E\C. The element t is called a rational liouvillian element over C if t′ ∈ C(t).

In other words, a rational liouvillian element is a non-constant liouvillian solution

of a differential equation (2.7). It is clear that if t is a rational liouvillian element over

C, then C(t) is a differential field.

Definition 2.2.3. [35, Definition 2.8] Let F (y, y′) = 0 be a first-order autonomous

AODE. A solution y = r(t) of the differential equation F (y, y′) = 0 is called a rational

liouvillian solution over C if it is of the form

r(t) =
ant

n + an−1t
n−1 + · · ·+ a1t+ a0

bmtm + bm−1tm−1 + · · ·+ b1t+ b0
,

where m,n ∈ N, ai, bj ∈ C and t is a rational liouvillian element over C.

If m and n are not both zero, then a rational liouvillian solution is non-constant.

Since C is algebraically closed and t is a rational liouvillian element over C, t must

be transcendental over C. If t′ ∈ C (in particular, t′ = 1), the differential field C(t)
is exactly the same as the field of rational functions C(x). In this case, a rational

liouvillian solution is a rational solution. Otherwise, the rational liouvillian solutions

are really different from the set of rational solutions in [14], radical solutions in [18],

fractional rational solutions in [3], and algebraic solutions in [1]. In fact, we make it

clearly by considering two simple examples in [2].
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Example 2.2.4. The differential equation

y′ − y = 0

admits exp x as a transcendental solution which is not rational. Setting t = expx, we

have t′ = t. This implies
t′

t
= 1 ∈ C. Hence, y = r(t) = t is a rational liouvillian

solution over C of the given equation.

Example 2.2.5. The differential equation

y′ − y2 − 1 = 0

admits y = tanx as a transcendental solution which is not rational. Setting t = exp(ix),

this follows
t′

t
= i ∈ C. Since

tanx =
i(1− exp(2ix))

1 + exp(2ix)
,

then our solution can be written as

y = tanx = r(t) =
i(1− t2)

1 + t2

which is a rational liouvillian solution over C of the given equation.

Remark 2.2.6. Grasegger also provides two examples about non-radical solutions, see

[18, Example 3 and Example 4], which are rational liouvillian solutions in these cases.

It is not hard to see that a rational liouvillian element over C or a rational

liouvillian solution of an autonomous AODE of order one is also a liouvillian solution.

However, the inverse is not true, for instance see Example 2.4.9. Here, Example 2.2.7

shows that a liouvillian solution of an autonomous AODE of order one may not be a

rational liouvillian element over C.

Example 2.2.7. [35, Example 2.3] The differential equation

y2y′2 − y2 + 1 = 0

has a solution y(x) =
√
x2 + 1. Since y(x) is algebraic over C(x), then it is liouvillian

over C. Set t = y(x), we prove that t′ /∈ C(t). In fact, if t′ =
x√
x2 + 1

∈ C(t), then

x ∈ C(
√
x2 + 1). So C(x) would coincide with C(

√
x2 + 1). From Lüroth theorem in

[58, Section 63], we have

√
x2 + 1 =

ax+ b

cx+ d
, with a, b, c, d ∈ C, ad− bc ̸= 0.

Therefore,

(cx+ d)2(x2 + 1) = (ax+ b)2.

This leads to a = b = c = d = 0 which is a contradiction. Hence t =
√
x2 + 1 is not a

rational liouvillian element over C.
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2.3 Main results

This section gives necessary and sufficient conditions for a first-order autonomous

AODE F (y, y′) = 0 (2.1) having a non-constant rational liouvillian solution.

Lemma 2.3.1. [35, Lemma 3.1] If the autonomous AODE F (y, y′) = 0 (2.1) has a non-

constant rational liouvillian solution then the corresponding algebraic curve F (y, w) = 0

is rational.

Proof. If y = r(t) is a non-constant rational liouvillian solution of F (y, y′) = 0, then

y′ = r′(t) =
dr

dt
t′ ∈ C(t).

Hence (r(t), r′(t)) is a rational parametrization of the algebraic curve F (y, w) = 0.

Therefore, the algebraic curve F (y, w) = 0 is rational. Note that such a parametrization

may be not a proper parametrization, for instance, see Remark 2.3.3.

Remark 2.3.2. From Lemma 2.3.1, if F (y, w) = 0 is not rational then the first-order

AODE F (y, y′) = 0 (2.1) has no non-constant rational liouvillian solution.

Remark 2.3.3. If t′ = 1 then C(t) coincides with C(x). This leads to (r(t), r′(t)) is

a proper paramatrization, see Theorem 2.1.3 and Theorem 1.5.7. Otherwise, since t is

transcendental over C, from [4, Theorem 3.2.2] we may take t′ = at+ b with a ̸= 0 and

choose r(t) = (at+ b)2, then r′(t) = 2(at+ b)t′ = 2(at+ b)2. It follows that

C(r(t), r′(t)) = C((at+ b)2, 2(at+ b)2) = C((at+ b)2) ̸= C(t).

From Theorem 1.5.7, (r(t), r′(t)) is not a proper parametrization.

Lemma 2.3.4 gives a sufficient condition for a first-order autonomous F (y, y′) = 0

having a non-constant rational liouvillian solution.

Lemma 2.3.4. [35, Lemma 3.2] Let (r1(t), s1(t)) be a proper rational parametrization

of F (y, w) = 0. If the AODE F (y, y′) = 0 has a non-constant rational liouvillian

solution then

dr1
dt
s1(t)

must be of the form
dz

dt
or

dz

dt
az

, where z ∈ C(t) and a ∈ C\0.

Proof. Suppose that r(t) is a non-constant rational liouvillian solution of F (y, y′) = 0.

By Lemma 2.3.1, (r(t), r′(t)) is a rational parametrization of F (y, w) = 0. From Lemma

1.5.8, there is a function φ(t) ∈ C(t) such that (r1(φ(t)), s1(φ(t))) = (r(t), r′(t)). Thus,

dφ

dt
t′ = φ′(t) =

s1(φ(t))

dr1
dt

(φ(t))

∈ C(φ(t)).
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Since r(t) is a rational liouvillian solution, then t is a rational liouvillian element over

C. Hence φ(t) is liouvillian over C. From the above formula, we have φ′(t) ∈ C(φ(t)).
This follows that φ(t) is a rational liouvillian element over C. From Proposition 2.2.1,
dr1
dt
s1(t)

must be of the form
dz

dt
or

dz

dt
az

, where z ∈ C(t) and a ∈ C\0.

Lemma 2.3.5 shows the form of rational liouvillian solutions via an indeterminate

x, where x′ = 1.

Lemma 2.3.5. [35, Lemma 3.3] Let (r(t), s(t)) be a proper parametrization of the

rational algebraic curve F (y, w) = 0. Setting h(t) =

dr

dt
s(t)

, we have two cases:

1. If there is an element z(t) ∈ C(t) such that h(t) =
dz

dt
, then by setting z(t) = x,

we obtain r(t) is a rational liouvillian solution of F (y, y′) = 0.

2. If there is an element z(t) ∈ C(t) such that h(t) =

dz

dt
az

for some a ∈ C\0, then
by setting z(t) = exp ax, we obtain r(t) is a rational liouvillian solution of F (y, y′) = 0.

Proof. 1. If there is an element z(t) ∈ C(t) such that h(t) =
dz

dt
, then setting z(t) = x,

we have z′(t) =
dz

dt
t′ = x′ = 1. This implies that t′ =

1

h(t)
∈ C(t) and r′(t) = s(t).

Hence y = r(t) is a solution of F (y, y′) = 0. Since z(t) = x, then t is algebraic over

C(x), this yields t is liouvillian over C. Since t′ =
1

h(t)
∈ C(t), then t is a rational

liouvillian element over C. Hence, such y = r(t) is a rational liouvillian solution of

F (y, y′) = 0.

2. If there is an element z(t) ∈ C(t) such that h(t) =

dz

dt
az

for some non-zero a ∈ C,

then by setting z(t) = exp ax, we have z′(t) =
dz

dt
t′ = a exp ax = az. This follows that

t′ =
1

h(t)
∈ C(t) and r′(t) = s(t). Hence y = r(t) is a solution of F (y, y′) = 0. Since

exp ax is liouvillian over C and t is algebraic over C(exp ax), then t is liouvillian over C.
From above, since t′ ∈ C(t), then t is a rational liouvillian element over C. Therefore,
such y = r(t) is a rational liouvillian solution of F (y, y′) = 0.

Lemma 2.3.6 reveals the existence of a rational liouvillian element t is independent

of the choice of a proper parametrization of an algebraic curve.
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Lemma 2.3.6. [35, Lemma 3.4] Let F (y, w) = 0 be a rational algebraic curve over C.
Suppose that (r1(t), s1(t)) and (r2(t), s2(t)) are two different proper rational parametriza-

tions of the curve F (y, w) = 0. Then the two following differential equations

t′ =
s1(t)

dr1(t)

dt

and t′ =
s2(t)

dr2(t)

dt

have the same liouvillian solvability.

Proof. Assume that (r1(t), s1(t)) and (r2(t), s2(t)) are two different proper rational

parametrizations of F (y, w) = 0, by Lemma 1.5.8, there exists a rational function

φ(t) =
at+ b

ct+ d
, with a, b, c, d ∈ C, ad−bc ̸= 0 such that (r1(φ(t)), s1(φ(t))) = (r2(t), s2(t)).

Assume that the equation t′ =
s2(t)

dr2(t)

dt

has a liouvillian solution t over C, then there

exists a liouvillian extension field E of C containing t. Then

t′ =
s2(t)

dr2(t)

dt

=
s1(φ(t))

dr1
dt

(φ(t))
dφ(t)

dt

.

It follows s = φ(t) is a solution of the equation s′ =
s1(s)

dr1(s)

ds

. Since t ∈ E and φ(t) is a

rational function over C, then φ(t) ∈ E. Hence, φ(t) is a liouvillian solution.

The results from Lemma 2.3.1 to Lemma 2.3.6 and Lemma 1.5.6 lead to the

following main theorem.

Theorem 2.3.7. [35, Theorem 3.1] A first-order autonomous AODE F (y, y′) = 0 has a

non-constant rational liouvillian solution if and only if the algebraic curve F (y, w) = 0

is rational and for every proper parametrization (r(t), s(t)), there exists z(t) ∈ C(t)

such that

dr

dt
s(t)

is of the form
dz

dt
or

dz

dt
az

for some non-zero a ∈ C. In the first case,

let z(t) = x, and in the second case, let z(t) = exp ax, where x′ = 1. Then r(t) is a

rational liouvillian solution of F (y, y′) = 0.

Remark 2.3.8. Theorem 2.3.7 shows that the AODE (2.1) does not have a rational

liouvillian solution if its corresponding algebraic curve F (y, w) = 0 is not rational. If

F (y, w) = 0 is of genus zero, then it has a proper parametrization (r(t), s(t)). Suppose

that r(t) is a rational liouvillian solution of the AODE (2.1), moreover, if there is an

expression t = g(x) respect to one of the two above cases z(t) = x and z(t) = exp ax,

then r(g(x)) is a rational liouvillian solution of F (y, y′) = 0. In these cases, r(g(x+ c))

is a rational liouvillian general solution.
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2.4 An algorithm and examples

In general, we can decide if h(t) ∈ Q(t) is one of the two forms described in

Theorem 2.3.7 as it was shown by Risch [41, Main Theorem]. Let F (y, w) ∈ Q[y, w]

be the defining polynomial of an algebraic curve, we provide an algorithm for deciding

when F (y, y′) = 0 has a rational liouvillian solution.

Algorithm RatLiouSol

Input: An algebraic curve F (y, w) = 0.

Output: A rational liouvillian general solution of F (y, y′) = 0 if any.

1. If the algebraic curve F (y, w) = 0 is not rational, then return “F (y, y′) = 0 does

not have a rational liouvillian solution”. Else,

2. Compute a proper parametrization (r(t), s(t)) of F (y, w) = 0 and set h(t) =

dr

dt
s(t)

.

3. If h(t) is not satisfied the two cases of Theorem 2.3.7, then return “F (y, y′) = 0

has no rational liouvillian solution”. Else,

4. If h(t) =
dz

dt
where z(t) ∈ C(t), then setting z(t) = x. There are some cases.

(a) If h(t) =
1

a
∈ C, then z(t) =

t

a
= x. So t = g(x) = ax, and y = r(ax) is

a rational solution. It also gets r(a(x+ c)) is a rational general solution.

(b) If h(t) =
1

a(t− b)2
, then z(t) =

−1

a(t− b)
= x, so t = g(x) = b − 1

ax
.

Hence y = r

(
b− 1

ax

)
is a rational solution. It also gets r

(
b− 1

a(x+ c)

)
is a

rational general solution.

(c) If t = g(x) and both cases (a) and (b) do not occur, then F (y, y′) = 0 has

a radical solution r(g(x)). In this case, r(g(x+ c)) is a radical general solution.

(d) If there is not an explicit function g(x) such that t = g(x), then r(t) is a

rational liouvillian solution which is not a radical solution.

5. If h(t) =

dz

dt
az

with z(t) ∈ C(t), then we set z(t) = exp ax. Assume t = g(x),

then we get r(g(x)) is a rational liouvillian solution of F (y, y′) = 0 which is not

algebraic. In this case, r(g(x+ c)) is a rational liouvillian general solution.
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Remark 2.4.1. Maple can help us to compute a proper rational parametrization of

F (y, w) = 0 and even h(t) if the curve is rational, by following commands.

> with(algcurves):

> F:=F(y,w);

> g:=genus(F,y,w);

> P:=parametrization(F,y,w,t); # (only exists when g=0)

> h:=simplify(diff(P[1],t)/P[2]);

Although Algorithm RatLiouSol is based on rational parametrizations of the cor-

responding algebraic curves, the solutions are not just rational solutions. The following

examples make this clearly.

Example 2.4.2. The differential equation

F (y, y′) = 229−144y+16yy′2+16y4−128y2+4yy′3+4y3−4y3y′2−y2y′2+6y′2+y′3+y′4 = 0

has the corresponding algebraic curve

F (y, w) = 229−144y+16yw2+16y4−128y2+4yw3+4y3−4y3w2−y2w2+6w2+w3+w4 = 0

which has a proper parametrization

(r(t), s(t)) =

(
t3 + t4 + 1

t2
,
t3 + 2t4 − 2

t

)
.

Compute

h(t) =

dr

dt
s(t)

=
1

t2
.

Hence, case 4.(b) occurs. It follows a rational general solution of the given equation is

r

(
−1

x+ c

)
=

(x+ c)4 − (x+ c) + 1

(x+ c)2
.

Example 2.4.3. Consider the differential equation

y5 − y′2 = 0.

Its corresponding algebraic curve y5 − w2 = 0 obtains a rational parametrization

(r(t), s(t)) = (t2, t5).

From that,

h(t) =
2

t4
=
dz

dt
, with z(t) =

−2

3t3
= x.
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This follows t = 3

√
−2

3x
. Hence, a rational liouvillian solution of the given equation is

r

(
3

√
−2

3x

)
=

3

√
4

9x2
.

We find that a rational liouvillian general solution is

r

(
3

√
−2

3(x+ c)

)
= 3

√
4

9(x+ c)2
.

Remark 2.4.4. In the above example, the rational liouvillian solution y = 3

√
4

9x2

is a fractional rational solution in [3], a radical solution in [18]. A fractional rational

solution is a special case of rational liouvillian solutions. The algebraic curve y5−w2 = 0

has a parametrization

(
3

√
4

9t2
, 3

√
−32

243t5

)
which is not a rational parametrization. In

[18], such a parametrization

(
3

√
4

9t2
, 3

√
−32

243t5

)
is called radical parametrization.

Example 2.4.5. Consider the differential equation

5y′6 − 3y′2 − 6y + 7 = 0.

Its corresponding algebraic curve

5w6 − 3w2 − 6y + 7 = 0

has a proper rational parametrization

(r(t), s(t)) =

(
5t6 − 3t2 + 7

6
, t

)
.

We obtain h(t) = 5t4 − 1. It follows

z(t) = t5 − t = x.

From Theorem 2.3.7, r(t) is a rational liouvillian solution. However, we can not express

t in terms of x by radicals. Therefore, r(t) is not a radical solution of the given equation.

Example 2.4.6. Consider the differential equation

y2 + y′2 = 1.

Its corresponding algebraic curve y2 + w2 = 1 has a proper rational parametrization

(r(t), s(t)) =

(
2t

t2 + 1
,
−t2 + 1

t2 + 1

)
.
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Compute

h(t) =
2

t2 + 1
=

dz

dt
iz
,

where

z =
t− i

t+ i
∈ C(t), i2 = −1.

By setting

z =
t− i

t+ i
= exp ix,

then

t′ =
t2 + 1

2
∈ C(t).

Hence, a rational liouvillian solution which is not algebraic of the given equation is

r(t) = r

(
−i exp ix− i

exp ix− 1

)
=
i

2
(exp ix− exp (−ix)).

Example 2.4.7. The differential equation

F (y, y′) = y′5 + y2y′3 − 3y2y′2 + 3y2y′ − y2 = 0

has no rational liouvillian solutions. In fact, the corresponding algebraic curve

F (y, w) = w5 + y2w3 − 3y2w2 + 3y2w − y2 = 0

has a proper rational parametrization

(r(t), s(t)) =

(
t5

t2 + 1
,

t2

t2 + 1

)
.

Compute

h(t) =

dr

dt
s(t)

= 3t2 + 2− 2

t2 + 1
=
dz1
dt

−

dz2
dt
iz2

,

where

z1(t) = t3 + 2t and z2(t) =
t− i

t+ i
.

Case (3.) occurs, hence, the given equation has no rational liouvillian solution.

Remark 2.4.8. Maplemay help us to compute a proper parametrization of a rational

curve F (y, w) = 0. However, in some cases we do not use exactly the parametrization

obtained by Maple 2022. For instance, in Example 2.4.2, by Maple, we get

(r(t), s(t)) =

(
t4 + 2t3 + 16

4t2
,
t4 + t3 − 16

4t

)
.
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Setting φ(t) = 2t, then we have

(r(φ(t)), s(φ(t))) =

(
t3 + t4 + 1

t2
,
t3 + 2t4 − 2

t

)
.

In Example 2.4.7, by Maple, we get a proper parametrization (r(t), s(t)) is(
−1419857t5 − 417605t4 + 49130t3 − 2890t2 + 85t− 1

19520t5 − 17328t4 + 5804t3 − 905t2 + 66t− 2
,
289t2 − 34t+ 1

305t2 − 42t+ 2

)
.

Setting φ(t) =
t+ 1

4t+ 17
, then we obtain

(r(φ(t)), s(φ(t))) =

(
t5

t2 + 1
,

t2

t2 + 1

)
.

In both cases, by Lemma 1.5.8, (r(φ(t)), s(φ(t))) are proper parametrizations. Since

Algorithm RatLiouSol is independent of the choice of proper parametrizations of an

algebraic curve, then we select the one which is suitable for computation.

Example 2.4.9. In Example 2.2.7, the liouvillian solution y(x) =
√
x2 + 1 is not a

rational liouvilian element over C. However, we will see that y(x) =
√
x2 + 1 can be

expressed as a rational function of a rational liouvilian element over C. In fact, we will

show that y(x) is also a rational liouvillian solution of the given autonomous AODE

F (y, y′) = y2y′2 − y2 + 1 = 0.

The corresponding algebraic curve has a proper parametrization

(r(t), s(t)) =

(
2t2 − 2t+ 1

2t− 1
,

2t(t− 1)

2t2 − 2t+ 1

)
.

Then h(t) = 1 +
1

(2t− 1)2
. It turns out z(t) = t− 1

2(2t− 1)
. We set

t− 1

2(2t− 1)
= x+

1

2
,

and choose

t = g(x+
1

2
) =

x+ 1 +
√
x2 + 1

2
.

This leads to a rational liouvillian solution

r(t) = r(g(x+
1

2
)) =

√
x2 + 1 = y(x).

If we set

z(t) = t− 1

2(2t− 1)
= x+ c+

1

2
,
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then the liouvillian rational general solution of the differential equation is

r(g(x+ c+
1

2
)) =

√
(x+ c)2 + 1,

which is also a radical general solution. We note that

t =
x+ 1 +

√
x2 + 1

2

is a rational liouvillian element over C because t′ =
1

h(t)
∈ C(t).

Remark 2.4.10. If the corresponding algebraic curve F (y, w) = 0 of an autonomous

AODE F (y, y′) = 0 has a rational parametrization and Procedure RadSol works, then

a radical solution of such the AODE found in this way is a rational liouvillian solution.

In all examples in [18] except for Example 6, radical solutions are rational liouvillian

solutions. Hence, if we want to show a radical solution which is not a rational liouvillian

solution, it must be not found in a rational parametrization. The next example reveals

that a first-order autonomous AODE may have a radical solution even its corresponding

algebraic curve does not have a rational parametrization.

Example 2.4.11. ([18, Example 6]) The differential equation

F (y, y′) = −y3 − 4y5 + 4y7 − 2y′ − 8y2y′ + 8y4y′ + 8yy′2 = 0

has a radical general solution y = r(x) = −
√
1 + x+ c√
1 + (x+ c)2

. The corresponding algebraic

curve has a radical parametrization(
−

√
1 + t√
1 + t2

,
t2 + 2t− 1

2
√
1 + t(t2 + 1)3/2

)
.

Since r(x) is algebraic over C(x), then r(x) is liouvillian over C. From Theorem 1.5.9,

the corresponding algebraic curve does not have a rational parametrization since its

genus is one (checked by Maple in Remark 2.4.1). From Theorem 2.3.7, r(x) is

not a rational liouvillian solution because there is no a rational liouvillian solution of

F (y, y′) = 0 outside a rational parametrization.

Conclusion

In this chapter, we give the necessary and sufficient conditions for a first-order

autonomous AODE F (y, y′) = 0 having a non-constant rational liouvillian solution. We

also present Algorithm RatLiouSol for determining such a rational liouvillian solution

of F (y, y′) = 0. However, this algorithm is not complete due to the explicit form of t

can not be decided in general. This problem will be investigated in Chapter 3.
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Chapter 3

Liouvillian solutions of first-order

autonomous AODEs of genus zero

In this chapter, we consider a class of first-order autonomous AODEs (2.1) and

study their liouvillian solutions. We prove that a liouvillian solution of a first-order

autonomous AODE of genus zero is necessarily a rational liouvillian solution over C.
As a consequence, the criterion for the existence of rational liouvillian solutions in

Chapter 2 is also applicable to such liouvillian solutions. Based on this, an algorithm

has been given to decide whether such differential equation has a liouvillian solution

and actually compute it in the affirmative case. This algorithm is arranged in such a

way that it classifies the types of solutions such as algebraic solutions and non-algebraic

solutions. In the first case, this algorithm, which is different from [1, Algorithm 4.4],

provides a way to compute it in the implicit form G(x, y) = 0. In the second case, the

algorithm finds a convergence function whose Taylor series is the truncated expression

of the formal power series solution determined by [13, Algorithm 1]. In addition, we

give a class of first-order AODEs of positive genus (see [56]) which does not have a non-

constant liouvillian solution. This induces a question (studied in Chapter 4) if there

are first-order AODEs of certain positive genera which obtain non-constant liouvillian

solutions? The content of this chapter is mainly based on the author’s works in [36].

The structure of the chapter is as follows. Section 3.1 presents Sylvester resultant.

Section 3.2 gives the necessary and sufficient conditions for a first-order autonomous

AODE (2.1) of genus zero having a liouvillian solution, then also classifies such the

solutions (if any) respect to algebraic and transcendental cases. An algorithm and its

applications are given in Section 3.3.
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3.1 Sylvester resultant

We recall a well-known elimination method to find the implicit algebraic relation

from the rational parametrizations.

Definition 3.1.1 (Sylvester resultant). ([4, Definition 1.4.1]) Let K be a field and t

be an indeterminate over K. Let A,B ∈ K[t]\0. Write

A = ant
n + · · ·+ a1t+ a0

and

B = bmt
m + · · ·+ b1t+ b0

where an ̸= 0, bm ̸= 0 and at least one of n or m is nonzero. The Sylvester matrix of A

and B is the (n+m)× (n+m) matrix defined by

S(A,B) =



an · · · · · · · · · a1 a0
. . .

an · · · · · · · · · a1 a0

bm · · · b1 b0
. . .

. . .
. . .

bm · · · b1 b0


where the A−rows are repeated m times and B−rows are repeated n times. The

resultant of A and B is the determinant of S(A,B), denoted by res(A,B).

Let P(t) =

(
m(t)

n(t)
,
p(t)

q(t)

)
, where m(t), n(t), p(t), q(t) ∈ C[t], and consider the

following polynomials

GP
1 (s, t) = m(s)n(t)− n(s)m(t), GP

2 (s, t) = p(s)q(t)− q(s)p(t)

as well as the polynomials

HP
1 (t, x) = x.n(t)−m(t), HP

2 (t, y) = y.q(t)− p(t).

The resultant (see in [4, 50]) with respect to t of HP
1 (t, x) and H

P
2 (t, y) denoted by

rest(H
P
1 (t, x), H

P
2 (t, y)).
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Lemma 3.1.2. ([50, Lemma 4.6]) Let C be a rational curve defining by F (x, y), and

P(t) be a rational parametrization of C. Then there exists h ∈ N such that

rest(H
P
1 (t, x), H

P
2 (t, y)) = (F (x, y))h.

Remark 3.1.3. Lemma 3.1.2 helps us to find the defining polynomial of a rational

curve via its parametrization. From [50] also,

h = degt(gcd(G
P
1 (s, t), G

P
2 (s, t))).

Moreover, P(t) is a proper parametrization of C if and only if h = 1.

3.2 Main results

First, we recall the definition of liouvillian solutions.

Definition 3.2.1. A solution η of the differential equation F (y, y′) = 0 is called a

liouvillian solution over C if η belongs to some liouvillian extension of C.

Next, Lemma 3.2.2 shows a relationship between rational liouvillian solutions

studied in Chapter 2 and liouvillian solutions of F (y, y′) = 0 when its corresponding

curve F (y, w) = 0 has genus zero.

Lemma 3.2.2. [36, Lemma 3.2] Let F (y, w) = 0 be a rational curve. Assume that η

is a liouvillian solution of F (y, y′) = 0 over C then η is a rational liouvillian solution

over C.

Proof. If η is a non-constant liouvillian solution of F (y, y′) = 0, then η is transcendental

over C. From Lemma 1.5.3, since F (η, η′) = 0, then C(η, η′) is an associated field of

algebraic functions of the rational curve F (y, w) = 0. Moreover, such the function field

C(η, η′) is of the form C(t). Therefore, we can write

η = r(t), η′ = s(t), with r(t), s(t) ∈ C(t).

Since

η′ =
dr

dt
t′ = s(t),

then

t′ =
1

h(t)
∈ C(t).

Since η = r(t) is a liouvillian solution over C and t is algebraic over C(η), then t belongs
to some liouvillian extension of C. Hence, t is a rational liouvillian element over C(t).
That means η = r(t) is a rational liouvillian solution.
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Finally, Theorem 2.3.7 and Lemma 3.2.2 motivate Theorem 3.2.3 which provides

the following ideas for determining algebraic and non-algebraic liouvillian solutions.

Theorem 3.2.3. [36, Theorem 3.3] Let F (y, w) = 0 be a rational curve. Then the first-

order autonomous AODE F (y, y′) = 0 has a liouvillian solution over C if and only if

for every proper parametrization (r(t), s(t)) of F (y, w) = 0, there exists z(t) ∈ C(t)

such that the associated function h(t) is either of the form
dz

dt
or

dz

dt
az

for some non-zero

a ∈ C. In the first case, let z(t) = x, and in the second case, let z(t) = exp(ax), then

r(t) is a liouvillian solution of F (y, y′) = 0.

Remark 3.2.4. Theorem 3.2.3 is not true if F (y, w) = 0 is not a rational curve. For

instance, [1, Example 4.5] shows that an AODE, whose corresponding algebraic curve

is not rational, has an algebraic general solution which is certainly a liouvillian solution

over C.

In Chapter 2, Algorithm RatLiouSol gives a way to compute a rational liouvillian

solution of F (y, y′) = 0. Unfortunately, this algorithm did not let we know whether

all algebraic solutions can be found. Certainly, similar questions arisen in the case of

non-algebraic solutions. In the rest of this chapter, we make the two issues clearly.

More precisely, with respect to the two cases of Theorem 3.2.3, liouvillian solutions are

classified in the case of algebraic solutions and non-algebraic solutions.

In the first case, we prove that F (y, y′) = 0 only has algebraic solutions which is

ensured by Theorem 3.2.8. This idea will be illustrated by the following results.

Lemma 3.2.5. [36, Lemma 3.5] Assume that F (y, w) = 0 has a proper parametrization

(r(t), s(t)) such that h(t) is of the form
dz

dt
, z(t) ∈ C(t). If F (y, w) = 0 has another

parametrization (r1(t), s1(t)), then h1(t) is of the form
dz1
dt

, z1(t) ∈ C(t).

Proof. From Lemma 1.5.8, there is a φ(t) ∈ C(t), such that

r1(t) = r(φ(t)) and s1(t) = s(φ(t)).

Then we have
dr1
dt
s1(t)

=

dr

dφ

dφ

dt

s(φ(t))
=
dz

dφ

dφ

dt
=
d(z(φ(t)))

dt
.

By setting z1(t) = z(φ(t)) ∈ C(t), we obtain h1(t) =

dr1
dt
s1(t)

=
dz1
dt

.
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Next lemma is a special case of Lemma 2.1.9.

Lemma 3.2.6. Let F (y, w) = 0 be a rational curve. If G(x, y) = 0 is an algebraic

solution of F (y, y′) = 0, then the genus of G(x, y) = 0 is zero.

Remark 3.2.7. Lemma 3.2.5 shows that the form of the associated function h(t)

is independent of the choice of proper parametrizations of the rational curve. This

follows that the statement in Theorem 3.2.8 is also independent of the choice of proper

parametrizations of the rational curve.

Theorem 3.2.8. [36, Theorem 3.8] Let F (y, w) = 0 be a rational curve. The AODE

F (y, y′) = 0 has an algebraic solution G(x, y) = 0 if and only if the associated function

h(t) is of the form
dz

dt
, where z(t) ∈ C(t). If the solution exists, the defining polynomial

G(x, y) can be determined by its parametrization.

Proof. (Necessary) Since F (y, w) = 0 is a rational curve, then it has a proper parametriza-

tion (r(t), s(t)). From Theorem 3.2.3, if h(t) is of the form
dz

dt
, then y = r(t) is a

liouvillian solution of F (y, y′) = 0, with z(t) = x. By setting

P(t) = (z(t), r(t)),

then it is a rational parametrization of an algebraic curve

G(x, y) = 0

whose defining polynomial can be found by using the resultant in Lemma 3.1.2. In this

case, G(x, y) = 0 is an algebraic solution of F (y, y′) = 0.

(Sufficient) Assume that G(x, y) = 0 is an algebraic solution of F (y, y′) = 0.

From Lemma 3.2.6, the genus of G(x, y) = 0 is zero. Therefore, it has a proper

parametrization

P(t) = (z(t), r(t)).

Since y = r(t) is a liouvillian solution of F (y, y′) = 0, then (r(t), r′(t)) is a rational

parametrization of F (y, w) = 0. Setting s(t) = r′(t), since

x′ =
dz

dt
t′ = 1,

then

h(t) =

dr

dt
s(t)

=

dr

dt
r′(t)

=
1

t′
=
dz

dt
.

The proof is complete.

48



By Theorem 3.2.8, if the second case of Theorem 3.2.3 occurs, then the AODE

F (y, y′) = 0 must have non-algebraic solutions. Moreover, the form of these solutions

can be determined by the next theorem.

Theorem 3.2.9. [36, Theorem 3.9] Let F (y, w) = 0 be a rational curve. Assume that

η is a non-algebraic liouvillian solution of F (y, y′) = 0. Then there are a non-zero

element a ∈ C and an irreducible polynomial G such that G(exp(ax), η) = 0. In other

words, η is algebraic over C(exp(ax)).

Proof. From Lemma 3.2.2, if η is a liouvillian solution of F (y, y′) = 0, we can write

such solution η by

η = η(t) ∈ C(t).

Therefore, the pair

(η(t), η′(t))

is a rational parametrization of F (y, w) = 0. Assume that (r(t), s(t)) be another proper

parametrization of F (y, w) = 0. Since α is a non-algebraic liouvillian solution, from

Theorem 3.2.3, there is a z(t) ∈ C(t) and a non-zero a ∈ C such that

h(t) =

dz

dt
az
.

By Lemma 1.5.8, there is a φ(t) ∈ C(t) such that

(η(t), η′(t)) = (r(φ(t)), s(φ(t))).

Therefore, we have

1

t′
=

d(r(φ(t)))

dt
s(φ(t))

=

dr

dφ

dφ

dt

s(φ(t))
=

dz(φ)

dφ

dφ

dt

az(φ)
=

d(z(φ(t)))

dt
a(z(φ(t)))

.

This means z(φ(t))′ = az(φ(t)). By setting

u = z(φ(t)) = exp(ax)

and using the resultant in Lemma 3.1.2, we can find the implicit form

G(u, η) = 0

from its parametrization P(t) = (z(φ(t)), η(t)).

Remark 3.2.10. The results of Theorem 3.2.3, Theorem 3.2.8, and Theorem 3.2.9

ensure that all liouvillian solutions of F (y, y′) = 0 can be found via proper rational

parametrizations of its corresponding rational curve. In the case of genus zero, a

liouvillian solution η of F (y, y′) = 0 is either an algebraic function over C(x) or an

algebraic function over C(exp(ax)). Therefore, η is an elementary solution of the given

AODE (see [51]). In other words, [51, Corollary 2] coincides with [56, Proposition 3.1].
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3.3 An algorithm and applications

Let F (y, w) ∈ Q[y, w] be the defining polynomial of a rational algebraic curve,

we provide an algorithm for deciding when F (y, y′) = 0 has a liouvillian solution.

Algorithm LiouSolAut

Input: A rational algebraic curve F (y, w) = 0.

Output: A liouvillian general solution of F (y, y′) = 0 if any.

1. Compute a proper parametrization (r(t), s(t)) of the algebraic curve F (y, w) = 0

and the associated function h(t) =

dr

dt
s(t)

.

2. If h(t) =
dz

dt
with z(t) ∈ C(t), then set z(t) = x and P(t) = (z(t), r(t)). Set

G(x, y) is the square-free part of

rest(H
P
1 (t, x), H

P
2 (t, y))

in Lemma 3.1.2, then G(x, y) = 0 is an algebraic solution. Hence, an algebraic

general solution of the given equation is G(x+ c, y) = 0.

3. If h(t) =

dz

dt
az

with z(t) ∈ C(t), then set z(t) = exp(ax) = u. Set P(t) =

(z(t), r(t)), by processing the same way of the case (2.), we obtain G(u, y) = 0 is

a non-algebraic liouvillian solution. Then G(exp(a(x+ c)), y) = 0 is a liouvillian

general solution.

4. Otherwise, the algorithm terminates, and F (y, y′) = 0 has no liouvillian solution.

Remark 3.3.1. [1, Algorithm 4.4] can compute algebraic solutions of F (y, y′) = 0

regardless the assumption on the corresponding algebraic curve. The main idea of this

algorithm is looking for the formal power series solution φ(x) = Σiaix
i with degree

bound of i, from that, an algebraic solution G(x, y(x)) = 0 can be derived. The idea

of [13, Algorithm 1] is based on local parametrizations of the corresponding algebraic

curve, then looking for the truncation of a formal power series solution of F (y, y′) = 0.

Clearly, Algorithm LiouSolAut differs from those above algorithms. In the special

case, when z(t) =
at+ b

ct+ d
holds for the case (2.), Algorithm LiouSolAut coincides with

Algorithm RatSol if we are looking for rational solutions.
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In next part, we present some examples to illustrate Algorithm LiouSolAut. In

addition, the algorithm can be applied for solving the differential equations in [13] in

the case that their corresponding curves have genus zero. In particular, Example 3.3.5

gives a solution which is the convergence function of the formal power series solution

of the differential equation in [13, Example 1].

Example 3.3.2. The differential equation

F (y, y′) = y′2 − yy′ + y − 2y′ + 2 = 0

has no liouvillian solution over C.

In fact, the corresponding curve F (y, w) = 0 has a proper parametrization

(r(t), s(t)) =

(
t2 − 2t+ 2

t− 1
, t

)
.

Compute

h(t) =
t− 2

(t− 1)2
=

1

t− 1
− 1

(t− 1)2
=

dz1
dt
z1

+
dz2
dt
,

where

z1(t) = t− 1 and z2(t) =
1

t− 1
.

Since h(t) = (z2 + log z1)
′ is neither of the form (

1

a
log z)′ nor (z)′, where

d

dt
=′ and z ∈ C(t),

then case (4.) occurs. Therefore, the given equation has no liouvillian solution over C.

Remark 3.3.3. By similar arguments, Example 2.4.7 also has no liouvillian solution

over C. Hence, these two examples have no other solutions defined in Definition 1.1.16.

Maple may be used for solving these AODEs, however, their general solutions (if any)

are not liouvillian over C.

Example 3.3.4. [36, Example 4.3] Find a solution of the differential equation

F (y, y′) = 5y′6 − 3y′2 − 6y = 0.

The corresponding algebraic curve F (y, w) = 0 has a proper parametrization

(r(t), s(t)) =

(
5t6 − 3t2

6
, t

)
.
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Compute h(t) = 5t4 − 1 and set z(t) = t5 − t = x. Case (2.) occurs. Therefore, this

equation has an algebraic solution G(x, y) = 0 with a rational parametrization

P(t) = (z(t), r(t)) =

(
t5 − t,

5t6 − 3t2

6

)
.

In this situation the solution r(t) obtained by Algorithm RatLiouSol is not a radical

solution. A similar case can be found in Example 2.4.5. Here, we compute

GP
1 (s, t) = s5 − t5 − s+ t, GP

2 (s, t) = 6(5(s6 − t6) + 3(−s2 + t2))

and

HP
1 (t, x) = x− t5 + t, HP

2 (t, y) = 6y − 5t6 + 3t2.

Since

degt(gcd(G1(s, t), G2(s, t))) = degt(t− s) = 1,

then the given differential equation has an algebraic solution

G(x, y) = rest(H
P
1 (t, x), H

P
2 (t, y))

=− 3125x6 − 11250x4y + 7776y5 − 10800x2y2 − 1728y3 + 48x2 + 96y = 0.

Therefore, G(x+ c, y) = 0 is an algebraic general solution.

Example 3.3.5. ([13, Example 1]) Consider the differential equation

F (y, y′) = y′2 − y3 − y2 = 0.

The corresponding curve F (y, w) = 0 has proper parametrization

(r(t), s(t)) = (t2 − 1, t(t2 − 1)).

Compute h(t) =
2

1− t2
and set z(t) =

t− 1

t+ 1
. Case (3.) occurs. By setting

u = z(t) = exp(x),

we obtain

P (t) = (
t− 1

t+ 1
, t2 − 1)

is a rational parametrization of G(u, y) = 0. By similar computation of Example 3.3.4,

we get

G(u, y) = (u− 1)2y − 4u.

By replacing u = exp(x), the given equation has a liouvillian solution

G(exp(x), y) = (1− exp(x))2y − 4 exp(x) = 0.

In this case, G(exp(x+ c), y) = 0 is a liouvillian general solution.
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Remark 3.3.6. With c = ln(3− 2
√
2) in the above general solution, then

y =
4(3− 2

√
2) exp(x)

(1− (3− 2
√
2) exp(x))2

is a solution of the differential equation in Example 3.3.5. Let us denote T3(x) to be

the Taylor series expansion of y at x = 0 with degree 3, we obtain

T3(x) = 1 +
√
2x+

5

4
x2 +

2
√
2

3
x3 + 0(x3).

It is clear that T3(x) is the solution A(S) (with the local parametization at c =

(1,
√
2) ∈ A1) of the differential equation in [13, Example 1].

Next, we consider a general case of Example 3.3.5, the AODE

y′2 = P (y), (3.1)

where P (y) ∈ C[y] has degree 3. We start off this issue with the following lemma.

Lemma 3.3.7. [36, Lemma 4.6] If F (y, w) = 0 has a proper parametrization (r(t), s(t))

and h(t) is of the form
1

at2 + bt+ c
where a, b, c ∈ C, then F (y, y′) = 0 has a liouvillian

solution.

Proof. There are three cases to consider:

1) If a = b = 0, then h(t) =
1

c
. By setting z(t) =

t

c
, then h(t) =

dz

dt
.

2) If a = 0, then h(t) =
1

bt+ c
. By setting z(t) = bt+ c, then h(t) =

dz

dt
bz

.

3) If a ̸= 0, then at2 + bt+ c = a((t+
b

2a
)2 − b2 − 4ac

4a2
). Set ∆ = b2 − 4ac.

(a) If ∆ = 0, by setting z =
−1

at+ b/2
, then h(t) =

dz

dt
.

(b) If ∆ ̸= 0, then at2 + bt+ c = a(t+
b

2a
+

√
∆

2a
)(t+

b

2a
−

√
∆

2a
).

By setting z(t) =
t+

b

2a
−

√
∆

2a

t+
b

2a
+

√
∆

2a

, then h(t) =

dz

dt√
∆

a2
z

.

Therefore, in all of above three cases, the given equation always has a liouvillian solution

by Theorem 3.2.3.
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Proposition 3.3.8. [36, Proposition 4.7 and Remark 4.8] The AODE (3.1) has a

liouvillian solution over C if an only if P (y) = 0 has repeated roots.

Proof. Assume that P (y) = 0 has repeated roots, then it can be written as

P (y) = a(y − b)2(y − c).

The corresponding curve of (3.1) has a proper parametrization (r(t), s(t))(
ab2ct2 − 2abct+ ac+ t2

(b2t2 − 2bt+ 1)a
,
t(ab3t2 − ab2ct2 − 2ab2t+ 2abct+ ab− ac− t2)

a(b3t3 − 3b2t2 + 3bt− 1)

)
.

Compute

h(t) =
−2

(ab3 − ab2c− 1)t2 + (−2ab2 + 2abc)t+ ab− ac
.

From Lemma 3.3.7, the given equation has a liouvillian solution.

If P (y) = 0 has no repeated roots, by Proposition 3.3.10, then the differential

equation (3.1) has no non-constant liouvillian solution over C.

Remark 3.3.9. If P (y) = 0 has no repeated roots, by Example 1.4.9, the genus of the

algebraic curve

w2 = P (y) (3.2)

is one and it is not a rational curve by Theorem 1.5.9. Hence, with Proposition 3.3.8,

we can say that the liouvillian solvability of the AODE (3.1) is decidable by checking

only the genus of the corresponding algebraic curve.

In final part, we consider a class of first-order autonomous AODEs (3.3) which is a

generalization of the AODE (3.2). By Example 1.4.9, the genus of the AODE (3.3) may

be reached to any positive number respect to the degree of P (Y ). We note that since

the associated algebraic function field C(y, y′) of the AODE (3.3) (see Section 1.5.1)

is of positive genus (see Theorem 1.3.23) then its behavior, therefore, is different from

such the function field of genus zero. For the description of a non-rational differential

function field, we refer to [23,31].

Proposition 3.3.10. ([56, Proposition 3.2]) Let P (X) ∈ C(X) be a polynomial of

degree ≥ 3 with no repeated roots. Then the differential equation

y′2 = P (y) (3.3)

has no non-constant liouvillian solution over C.
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Proof. Suppose that there exists a non-constant liouvillian solution y satisfying the

differential equation (3.3). Since C is algebraically closed, such an element y must be

transcendental over C. By [56, Theorem 2.2], there is an element z ∈ C(y, y′)\C such

that either z′ = 1 or z′ = az for non-zero element a ∈ C. Since P (y) has no repeated

roots then it is not a square of an element in C[y], that means y′ /∈ C(y). Hence, y′

belongs to a quadratic extension of C(y). Moreover, from (2.8), we obtain z /∈ C(y).
Hence, we can write

z = A+By′, where A,B ∈ C(y), B ̸= 0. (3.4)

We will show that such an element z of the form (3.4) does not exist. In fact, by taking

the derivatives to (3.4), we obtain

z′ = A′ +B′y′ +By′′.

Using (2.8) and (3.3), we have

z′ = y′
∂A

∂y
+ P

∂B

∂y
+
B

2

∂P

∂y
.

If there is an element z of the form (3.4) such that z′ = az then by comparing

coefficients of the above equation, we obtain

∂A

∂y
= aB (3.5)

and

P
∂B

∂y
+
B

2

∂P

∂y
= aA. (3.6)

Multiplying (3.6) by 2B and using (3.5), we obtain

∂B2P

∂y
=
∂A2

∂y
.

Hence, there is a non-zero element c ∈ C such that

B2P = A2 + c. (3.7)

Write A = A1/A2 and B = B1/B2, where A1, A2, B1, B2 are polynomials in C[y] such
that A1, A2 are relatively prime, B1, B2 are relatively prime and A2, B2 are monic.

Then since P has no square factors, it follows from the equation

B2
1PA

2
2 = (A2

1 + cA2
2)B

2
2

that A2 = B2. From the equation (3.5) and the assumption that A2 and B2 are monic,

then A2 = B2 = 1 and degA = 1 + degB. From equation (3.7), then

2degA− 2 + degP = 2degA,

55



which follows degP = 2, a contradiction.

If there is an element z of the form (3.4) such that z′ = 1 then
∂A

∂y
= 0 and

P
∂B

∂y
+
B

2

∂P

∂y
= 1.

This follows
∂(B2P )

∂y
= 2B. (3.8)

Now we will prove that B does not exist by showing it cannot be a polynomial or has

a pole of order ≥ 1. In fact, we obtain a contradiction with (3.3) if B ∈ C[y] since

deg
∂(B2P )

∂y
= 2degB + degP − 1 ≥ 2 + 2 degB > degB.

If B has c ∈ C is a pole of order m ≥ 1 then such B can be written as

B = f +
m∑
1

αi

(y − c)i

where f ∈ C(y) and c is not a pole of f . Since P has no repeated roots, then B2P

has a pole at c of order ≥ 2m − 1. Hence c is a pole of
∂(B2P )

∂y
of order ≥ 2m which

contradicts with (3.3).

Corollary 3.3.11. The elliptic function y such that

y′2 = y3 + ay + b, where a, b ∈ C, a3/27 + b2/4 ̸= 0 (3.9)

is not liouvillian.

Remark 3.3.12. Hyperelliptic curves are generalisation of elliptic curves, and they

were suggested by Koblitz [22] (1989) that they might be useful for public key cryptog-

raphy. We note that there is not a group law (which exists on the points of an elliptic

curve, see [23] or [26, Chapter 10]) on the points of a hyperelliptic curve; instead the

divisor class group of the curve has been used, for details, see [17, Chapter 10].

To finish this chapter, we recall Rosenlicht’s method in [46] for the proof of

Corollary 3.3.11. We start with the following proposition.

Proposition 3.3.13. ([46, Proposition]) Let k be a differential field of characteristic

zero, let n be a positive integer, and let f be a polynomial in several variables with

coefficients in k and of total degree less than n. Then if the differential equation

yn = f(y, y′, y′′, · · · )

has a solution in some liouvillian extension field of k, it has a solution in an algebraic

extension field E of k.
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Proof. It clearly suffices to prove this under the simpler assumption that the equation

has a solution y in a differential extension field E of k which is a finite algebraic

extension of a field k(t), where t is transcendental over k and either t′ or t′/t is in k.

In this case, E is a field of algebraic functions of one variable over k, see Section 1.3.

Let P be a pole of t, that is, a k-place of E such that ordP (t) < 0. Then in either case

t′ ∈ k or t′/t ∈ k, we get

ordP (t
′/t) ≥ 0.

By [45, Lemma 1], the derivation on E is continuous in the topology of P . Hence case

(1) of [46, Theorem] holds, and for any x ∈ K we have

ordPx
′ ≥ min(0, ordPx).

Thus

ordPy
(m) ≥ min(0, ordPy) for all m ≥ 0.

If ordPy < 0 then

ordPf(y, y
′, y′′, · · · ) ≥ (n− 1)ordPy > n · ordPy = ordP (y

n).

This is a contradiction. Therefore, ordPy
(m) ≥ 0 for all m ≥ 0. Hence each y(m)(P ) is

finite (see Definition 1.3.7), therefore, algebraic over k, with y(m+1)(P ) = (y(m)(P ))′.

Thus y(P ) is a solution of the differential equation that is algebraic over k.

Proposition 3.3.14. [46, page 372-373] The AODE (3.9) has no liouvillian solution

over C.

Proof. It suffices to show that any element y of a liouvillian extension of the field

C(x) of rational functions of the complex variable x which satisfies the AODE (3.9) is

necessarily constant. Note that all elements of C are constant and that C(x) is itself

a liouvillian extension of C, since x′ = 1. As above, it remains only to show that if

k ⊂ E are differential extension fields of C, with E a finite algebraic extension of k(t),

where t is transcendental over k and either t′ ∈ E or t′/t ∈ E, and if there exists

a non-constant solution y of the AODE (3.9) in E, then there exists a non-constant

solution that is algebraic over k. Let the k-place P of E be any pole of t, then by

Theorem 3.3.13, y(P ) is a solution of the AODE (3.9) and we are all done unless it

happens that y′(P ) = 0. If this is the case, since we have y′ ̸= 0, the place P induces

a nontrivial C-place of the elliptic function field over C given by C(y, y′), which is the

associated algebraic function field over C of the cubic curve

w2 = y3 + ay + b. (3.10)
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The points of this curve (3.10) that are rational over C have a commutative group

structure, see [26, Chapter 10], for instance. Each point of the curve that is rational

over C produces a translation of the points of the curve which is an automorphism of

the curve, equivalent to one of its function field C(y, y′). By Galois theory of Kolchin

[23, Chapter III, 6.], the latter one is a differential automorphism. For only a finite

number of such differential automorphisms σ of C does the place induced by C on the

cubic curve (3.10) go into one of the finite number of zeros of y′. Hence, for any σ

distinct from a finite set we have (σy′)(P ) ̸= 0. That is (σy)′(P ) ̸= 0. This follows

(σy)(P ) is a non-constant solution of the differential equation that is algebraic over k

and the proof is complete.

Remark 3.3.15. The key point of the proof is to show the existence of the non-constant

solution y(P ) such that y′(P ) ̸= 0. By induction, this is applied to the case k = C.
Since y(P ) is algebraic over C then y′(P ) = 0 which is a contradiction. Actually, the

Rosenlicht’s method has not been used in the next parts of this dissertation. However,

we recall the method due to two reasons which provide the learners more materials to

reference. First, we use the language of Section 1.3 for the case of solving AODEs.

Last, we briefly introduce weierstrassian elements which satisfy the equation (3.9). It

is clearly that a weierstrassian element is not liouvillian. More interesting properties

of such weierstrassian elements can be found in [23, Chapter III, 6].

Conclusion

We have shown that a liouvillian solution of a first-order autonomous AODE

of genus zero is necessary a rational liouvillian solution over C (see Lemma 3.2.2).

In affirmative case, such a liouvillian solution is classified as an algebraic solution or

a transcendental solution. Finally, these results lead to Algorithm LiouSolAut for

determining liouvillian solutions of first-order autonomous AODEs of genus zero. This

algorithm is complete since it terminates and if there is a liouvillian solution then its

(implicit) form can be returned. In next chapter, we are going to consider if this idea

can be applied for solving first-order non-autonomous AODEs.
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Chapter 4

Liouvillian solutions of first-order

AODEs

The content of this chapter is mainly based on the author’s works in [37,38]. For

the purpose considered in Section 4.4, let us denote C(z) be a differential field with

the derivation ′ is
d

dz
, i.e. the derivative respect to z, where C is the field of constants.

A first-order AODE over C(z) is a differential equation of the form

F (Y, Y ′) = 0, (4.1)

where F is an irreducible polynomial of C(z)[y, w].

Structure of the chapter is as follows. In Section 4.1, we take the method of [7,57]

to dealt with the task of finding liouvillian solutions of the AODEs (4.1) whose genus are

of zero. Using the theory of fields of algebraic functions of one variable, we prove that for

determining liouvillian general solutions of the AODEs (4.1) of genus zero, working with

the class of quasi-linear first-order ordinary differential equations (ODEs) is essentially

enough. It turns out to be an algorithm for finding a liouvillian general solution of such

a class of first-order AODEs. In Section 4.2, we give an algorithm to determine the

reduced forms of certain first-order AODEs by means of power transformations. This

leads to a method to solve first-order AODEs of positive genera in case of their reduced

forms are of genus zero. Section 4.3 considers Möbius transformations. In Section 4.4,

by means of change of variables, we present an approach for finding liouvillian solutions

of a class of first-order AODEs with coefficients in a liouvillian extension of C(x).
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4.1 Liouvillian solutions of first-order AODEs of

genus zero

4.1.1 Associated differential equations

In this section, we take the method studied in [7,57] for finding liouvillian solutions

of a first-order AODE (4.1) when its corresponding algebraic curve F (y, w) = 0 is

rational. In this case, the curve has a proper parametrization

P(t) = (u(t), v(t)) ∈ C(z)
2
(t).

Such components of P(t)

u = u(t), v = v(t),

can be seen as two algebraic functions of two variables z and t. To determine a solution

of the AODE (4.1) via the proper parametrization P(t) = (u(t), v(t)), we find a function

t = t(z) such that
d

dz
u(t(z)) = v(t(z)).

Therefore
∂u

∂t
t′(z) +

∂u

∂z
= v(t(z)). (4.2)

Equation (4.2) motivates the following first-order ODE.

t′(z) =
v(t)− ∂u(t)

∂z
∂u(t)

∂t

. (4.3)

Definition 4.1.1. The ODE (4.3) is called the associated differential equation of the

AODE (4.1) respect to a proper parametrization P(t) = (u(t), v(t)).

Although the ODE (4.3) depends on the form of a proper parametrization of the

corresponding rational curve, there is a relation between two associated differential

equations which respect to different proper parametrizations.

Lemma 4.1.2. [37, Lemma 3.3] Let P (t) and P̃(t) be two proper parametrizations of

F , then there is a change of variables s =
αt+ β

γt+ δ
, where α, β, γ, δ ∈ C(z), αδ−βγ ̸= 0,

between the two associated equations of F respect to P(t) and P̃(t).

Proof. Let P (t) and P̃(t) be two proper parametrizations of F . From Lemma 1.5.8

there is a linear function φ(t) =
αt+ β

γt+ δ
, where α, β, γ, δ ∈ C(z), αδ − βγ ̸= 0, such

60



that P̃(t) = P(φ(t)). The associated differential equation of F respect to ˜P(t) is

t′(z) =
v(φ(t))− ∂u(φ(t))

∂z
∂u(φ(t))

∂t

=
v(φ(t))− ∂u(φ(t))

∂z
∂u(φ(t))

∂φ

∂φ

∂t

. (4.4)

From that, we obtain

(φ(t))′(z) =
v(φ(t))− ∂u(φ(t))

∂z
∂u(φ(t))

∂φ

. (4.5)

By setting s = φ(t), then P(s) = (u(s), v(s)) is also a proper parametrization of F .

Replacing s = φ(t) in equation (4.5), we have the associated differential equation of F

respect to P(s) is

s′(z) =
v(s)− ∂u(s)

∂z
∂u(s)

∂s

. (4.6)

Hence, there is a change s = φ(t) between the two ODEs (4.4) and (4.6).

4.1.2 Main results and an algorithm

The following theorem is the meat of this section.

Theorem 4.1.3. [37, Theorem 3.4] A first-order AODE (4.1) of genus zero has a

liouvillian general solution if and only if so does its associated ODE (4.3) respect to a

certain proper parametrization P(s).

Proof. It is obvious that if s(z) is a liouvillian solution of the first-order ODE (4.3)

over C(z), then Y (z) = u(s(z)) is a liouvillian solution of the first-order AODE (4.1)

over C(z). In the reverse, we consider the two cases respect to the kind of liouvillian

solutions.

Assume that Y (z) is a liouvillian solution of the first-order AODE (4.1) which is

transcendental over C(z). By Lemma 1.5.3, since F (y, w) = 0 is a rational curve, then

the associated algebraic function field C(z)(Y (z), Y ′(z)) is of genus zero, moreover, it

is of the form C(z)(t). Hence, there are functions m(t) and n(t) in C(z)(t) such that

Y = m(t), Y ′ = n(t).

In this case, P̃(t) = (m(t), n(t)) is a rational parametrization of F . Moreover

d

dz
(m(t)) = n(t).
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Hence, t(z) is a solution of the associated ODE (4.3) respect to P̃(t). By Lemma 1.5.8,

there is a rational function φ(t) ∈ C(z)(t) such that

P(φ(t)) = P̃(t).

It follows s = φ(t) is a solution of the ODE (4.3) respect to P (s) (see Lemma 4.1.2).

Since t(z) is an algebraic function of Y (z), and s is an algebraic function of t(z), then

s(z) is a liouvillian solution of the ODE (4.3).

Assume that Y (z) is an algebraic general solution of the AODE (4.1) over C(z).
By [57, Lemma 5.2], there is an algebraic solution s(z) of the ODE (4.3) such that

Y (z) = u(s(z)). The proof is complete.

Remark 4.1.4. In Theorem 4.1.3, the property of having a liouvillian solution of an

AODE (4.1) is independent of the choice of proper parametrizations of its corresponding

algebraic curve. From [57, Theorem 4.3], there is an optimal parametrization P(t) such

that the ODE (4.3) is of the form

t′ =
dt

dz
= f(z, t) ∈ C(z, t). (4.7)

Hence, without loss of generality, when considering an associated differential equation

of the AODE (4.1) of genus zero, we may consider it in the form (4.7).

From the above results, we give a pseudo-code algorithm for finding a liouvillian

general solution of an AODE (4.1).

Algorithm LiouSol

Input: A first-order AODE F (Y, Y ′) = 0 (4.1) of genus zero.

Output: A liouvillian general solution of F (Y, Y ′) = 0 if any.

1. Find an optimal parametrization P(t) = (u(t), v(t)) ∈ (C(z, t))2 of F (y, w) = 0.

2. Compute the associated ODE (4.7) respect to P(t).

3. If the ODE (4.7) has a liouvillian general solution t(z), then return

“Y (z) = u(t(z)) is a liouvillian general solution of F (Y, Y ′) = 0”.

4. Else, return “F (Y, Y ′) = 0 has no liouvillian general solution”.
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4.1.3 An investigation of first-order ODEs (4.7) and examples

In Kamke’s book, more than 70 percent of the ODEs listed in [21, page 355-391]

are first-order AODEs of genus zero, more precisely, a classification of such AODEs

can be found in [6, Appendix]. In this situation, Algorithm LiouSol can be applied

for finding their liouvillian solutions. Solving the ODE (4.7) is an intrinsic step of

Algorithm LiouSol, unfortunately, up to this time we do not know if an ODE (4.7)

can be solved completely. In below, we consider some cases.

Proposition 4.1.5. [37, Proposition 3.6] If the ODE (4.7) is of the form

t′ = b(z)t+ c(z), (4.8)

where b(z), c(z) ∈ C(z) then it always has a liouvillian general solution.

Proof. In fact, such ODE (4.8) follows the differential equation(
t exp

∫
−b(z)

)′

= c(z) exp

∫
−b(z)

whose solution is

t(z) =

(
c+

∫ [
c(z) exp

∫
−b(z)

])
exp

∫
b(z),

(where constants c ∈ C) which belongs to the following liouvillian extension

C(z) ⊂ C
(
z, exp

∫
−b(z)

)
⊂ C

(
z, exp

∫
−b(z),

∫ [
c(z) exp

∫
−b(z)

])
.

Remark 4.1.6. The ODE (4.8) may not have an elementary solution, for instance, see

the case with b(z) = 2z and c(z) = 1 in Example 1.1.19. The more general case of the

ODE (4.8), i.e. the Risch differential equation problem to decide whether the ODE

t′ = ft+ g, where f, g ∈ E

has a solution in E and find one if any, can be found in [4, Chapter VI] or in [41].

Proposition 4.1.7. [37, Proposition 3.8] Assume that the ODE (4.7) is of the form

a Riccati equation

t′ = a(z)t2 + b(z)t+ c(z), (4.9)

where a(z), b(z), c(z) ∈ C(z) and a(z) ̸= 0. Then we can determine if it has a liouvillian

solution or not.
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Proof. By setting

t = − u′

a(z)u
, (4.10)

the ODE (4.9) is transformed into the second order homogeneous ODE

u′′ − a(z)b(z) + a′(z)

a(z)
u′ + c(z)a(z)u = 0. (4.11)

The problem of determining liouvillian solutions of the ODE (4.11) has been solved

completely by the works of Kovacic in [25]. Moreover, the formula (4.10) ensures that

the ODE (4.9) has a liouvillian solution if and only if so does the ODE (4.11). In fact,

if t(z) is a liouvillian solution of the ODE (4.9) then u(z) is a liouvillian solution of the

ODE (4.11) since
u′

u
= −a(z)t

belongs to a liouvillian extension of C(z). The inverse statement is clearly by using

similar argument. In a special case, if the ODE (4.9) is autonomous, by Lemma 3.3.7,

it always has a liouvillian general solution.

Proposition 4.1.8. [37, Proposition 3.9] If the ODE (4.7) is autonomous, then we

can determine if it has a liouvillian solution or not.

Proof. It is clearly that our statement is due to [56, Proposition 3.1] and [41, Main

Theorem]. From [36], the liouvillian solution of the autonomous ODE (4.7) is either an

algebraic function over C(z) or over C(exp az). Therefore, a liouvillian general solution

of the AODE (4.1) is either an algebraic function over C(z) or an algebraic function

over C(z)(exp az).

Concerning to other forms of solutions, there are following results.

Proposition 4.1.9. [37, Proposition 3.10] If the ODE (4.7) admits a transcendental

meromorphic solution or a rational general solution, then it is necessarily of the form

a Riccati equation (4.9).

Proof. First, the condition for the ODE (4.7) having a transcendental meromorphic

solution is well-known in analysis, and its proof can be found in [10,29]. If t(z) is such

a solution, then u(t(z)) is a transcendental meromorphic solution of the AODE (4.1).

Next, [57, Section 5] has shown that the rational general solutions of the ODE (4.7) can

not be found outside a Riccati equation. Note that, the problem of finding a rational

general solution of a parametrizable AODE (4.1) is solved completely by the works of

[2, 7, 25, 57]. If t(z) is a rational general solution of the ODE (4.7), then u(t(z)) is a

rational general solution of the AODE (4.1).
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Remark 4.1.10. Besides above cases, there are other situations that we can rely.

• If the ODE (4.7) drops in the form of the ones considered in [21, page 293-354]

then the method for solving them in [21, page 1-32] can be applied. In this case,

we may build liouvillian extensions (see [4]) to decide if our solutions can be the

liouvillian ones.

• One more case, the method of finding liouvillian first integrals (see [55, page 673])

can be applied for determining liouvillian solution. In fact, the ODE (4.7) can

be written by following formula

dt

dz
=
M(z, t)

N(z, t)
(4.12)

whereM(z, t), N(z, t) ∈ C[z, t], which induces the differential form (Mdz−Ndt).
By the works of [9, 40, 55], we can determine if such the differential form has a

liouvillian first integral I(z, t) which generates the general solution I(z, t) = c of

the ODE (4.12), where I(z, t) is a liouvillian function (see [52,55]).

• Using software computation, Maple may help us process our method as follows.

> with(algcurves):

> F:=F(y,w);

> g:=genus(F,y,w);

> P:=parametrization(F,y,w,t); # (only exists when g = 0)

> f:=simplify(P[2]-diff(P[1],z)/diff(P[1],t)); # (assoc. ODE)

Assume that f := f(z, t) then we solve it by following commands.

> infolevel[dsolve] := 2; # (info. of the efficient method)

> dsolve(t’- f(z,t)=0); # (sol. the associated ODE)

We conclude this section by some examples which illustrate Algorithm LiouSol

and the above considerations. In an affirmative case, by using Maple 2022 with above

commands, the ODE

t′ = t2 − 2zt

has a liouvillian general solution (the Bernoulli method is used, see [21, page 19])

t(z) =
−2 exp(−z2)√
π erf(z)− 2c

since it belongs to a liouvillian extension E of C as follows

E = C
(
z, exp(−z2),

∫
exp(−z2)dz

)
⊃ C

(
z, exp(−z2)

)
⊃ C(z) ⊃ C.
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In the other case, by [9], the following ODE (see [9, Example 7])

t′ = −3 + t2z4

z4

has a liouvillian general solution I(z, t) = c, where I(z, t) is a liouvillian first integral

I(z, t) =
1√
3
arctan

(
z2t− z√

3

)
− 1

z
.

In some cases, the method of [9] may help us find the solution which can not be

detected by Maple 2022, for instance, see [9, Example 2.1]. However, we note that

a general solution of a certain ODE (4.7) induced by such a liouvillian first integral is

not necessary a liouvillan solution. In fact, a general solution I(z, t) = c of the ODE

t′ =
t2

z(t− z)

induced by the liouvillian first integral

I(z, t) = log t− t

z
,

is not liouvillian, see [45, page 22].

Example 4.1.11. Consider the first-order AODE

F (Y, Y ′) = −z3Y 3 + z2Y ′2 − 2z2Y 2 + 2zY Y ′ − zY + Y 2 = 0. (4.13)

Non-constant solutions of the AODE (4.13) determined by Maple 2022 are not

explicit (it involves integral signs and Root-Of). On the other hand, by Maple 2022,

the corresponding curve of (4.13) has a proper parametrization

P(t) =

(
z2t2 + 2zt+ 1

z(t2 + 2zt+ z2)
,
t3z4 + 4t2z3 + tz4 − t2z + 3tz2 + z3 − t

z2(t3 + 3t2z + 3zt2 + z3)

)
.

The associated ODE of (4.13) respect to P(t) is a Riccati equation (4.9)

t′(z) =
(z2 − 1)t2 + 4tz + (z2 + 3)

2(z2 − 1)
. (4.14)

By the change (see Lemma 4.1.2)

s =
zt+ 1

t+ z
,

the ODE (4.14) is transformed into an autonomous one

s′(z) =
s2 + 1

2
, (4.15)
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which corresponds with the proper parametrization

P(s) =

(
s2

z
,
(s2z − s+ z)s

z2

)
.

A liouvillian general solution of (4.15) is

s(z) = i
1− exp i(z + c)

1 + exp i(z + c)
, i2 = −1.

Hence, a liouvillian general solution of the original AODE (4.13) is

Y (z) = − (1− exp i(z + c))2

z(1 + exp i(z + c))2
.

Example 4.1.12. [21, 464, page 374] Consider first-order AODE

Y Y ′2 + 2zY ′ − Y = 0. (4.16)

The corresponding curve of (4.16) has a proper parametrization

P(t) =

(
− 2zt

t2 − 1
, t

)
.

The associated ODE of the AODE (4.16) respect to P(t) is an Abel equation of the

first kind (for details, see [21, page 24])

t′ =
t3 − t

2z
, (4.17)

which has an algebraic general solution

t(z) =
1√

cz + 1
.

Hence, an algebraic general solution of (4.16) is

Y (z) =
2
√
cz + 1

c
.

Remark 4.1.13. It is clear that Algorithm LiouSol can not be applied directly to

first-order AODEs of positive genera since they have no rational parametrization. To

deal with the AODEs of positive genera, radical parametrizations of algebraic curves

introduced in [47] can be used, see [18, PROCEDURE 1]. This method leads to the

problem of solving a radical integral. We note that [48, Algorithm 4.12] can be applied

for finding rational parametrizations from the radical ones, by these, a radical integrand

is converted into the one which is rational, see [48, Example 4.18]. Unfortunately, this

algorithm is only valid for rational algebraic curves, hence, it is not applicable in these

non-rational cases. In Section 4.2, we give a novel approach to determine liouvillian

solutions of first-order AODEs of positive genera whose final steps relies on rational

parametrizations.
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4.2 Power transformations and their applications

We define power transformations among polynomials. Based on this, we give an

algorithm to determine the reduced forms of first-order AODEs (4.1). In application,

we present a method for solving first-order AODEs (4.1) of positive genera in the case

of the reduced forms are of genus zero.

4.2.1 Power transformations

Let G(u, u′) be a polynomial in C(z)[u, u′], and let us write it in the form

G(u, u′) = G0(u, u
′) +G1(u, u

′) + . . .+Gd(u, u
′), (4.18)

where

Gk(u, u
′) =

∑
i+j=k

ciju
iu′j, cij ∈ C(z)

is the homogeneous component of degree k of G.

Definition 4.2.1. [37, Definition 4.1] A power transformation is a transformation of

the form

u = Y n, u′ = nY n−1Y ′, 2 ≤ n ∈ N. (4.19)

Substituting (4.19) into Gk(u, u
′), we obtain∑

i+j=k

cijY
ni(nY n−1Y ′)j =

∑
i+j=k

cijn
jY (n−1)kY iY ′j, (4.20)

which is a homogeneous polynomial of degree nk. Hence, (4.18) is transformed into

G(u, u′) = G
(
Y n, nY n−1Y ′) = d∑

k=0

∑
i+j=k

cijn
jY (n−1)kY iY ′j. (4.21)

Let k0 be the lowest degree of the non-zero homogeneous component of G, then by

factorization we obtain

G(u, u′) = Y (n−1)k0

d∑
k=k0

∑
i+j=k

cijn
jY (n−1)(k−k0)Y iY ′j = Y (n−1)k0F (Y, Y ′), (4.22)

where

F (Y, Y ′) =
d∑

k=k0

∑
i+j=k

cijn
jY (n−1)(k−k0)Y iY ′j = Fnk0

(Y, Y ′) + · · ·+ Fnd
(Y, Y ′).

Above considerations lead to the following lemma.
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Lemma 4.2.2. [37, Lemma 4.2] Let G(u, u′) and F (Y, Y ′) are two polynomials over

C(z). If there is a power transformation (4.19) such that the formula (4.22) is satisfied,

then the followings hold.

1. For each k ≥ k0, the polynomial

Fnk
(Y, Y ′) =

∑
i+j=k

cijn
jY (n−1)(k−k0)Y iY ′j

is homogeneous of degree nk = n(k−k0)+k0, and nk0 is the lowest degree among

the non-zero homogeneous components of F . Moreover, nk0 = k0.

2. Let nk1 and nk2 be the degrees of two different homogeneous components of F .

Then n is a common divisor of (nk1 − nk0) and (nk2 − nk0).

3. If F is an irreducible polynomial then so is G. In this case, if F has genus zero

then the genus of G is zero too. Moreover, the reverse of these two properties are

not true.

Proof. 1. From (4.22), let k ≥ k0 and n ≥ 2, each of above polynomials has degree

nk = (n− 1)(k − k0) + k = n(k − k0) + k0.

Clearly that, nk0 = k0. If k > k0 then nk > nk0 . By abuse of notation, we also call k0

the lowest degree of the non-zero homogeneous component of F .

2. From above expression, we can write

nk1 − nk0 = n(k1 − k0); nk2 − nk0 = n(k2 − k0).

Clear that, n is a common divisor of (nk1 −nk0) and (nk2 −nk0). To avoid trivial cases,

we always assume that F is a non-homogeneous polynomial (so is G).

3. First, assume that F is irreducible, then G is irreducible too. In fact, if G is

reducible, it can be written (see (4.22))

G(u, u′) = G̃1(u, u
′)G̃2(u, u

′) = Y (n−1)k01F̃1(Y, Y
′)Y (n−1)k02F̃2(Y, Y

′),

where k01 + k02 = k0. By comparing with (4.22), we obtain following contradiction

F (Y, Y ′) = F̃1(Y, Y
′)F̃2(Y, Y

′).

Hence, G is irreducible. In addition, if F = 0 is of genus zero, there is a rational pair

(r(t), s(t)) ∈ (C(z)(t))2 that F (r(t), s(t)) = 0. By (4.22), G(rn(t), nrn−1(t)s(t)) = 0.
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That means (rn(t), nrn−1(t)s(t)) ∈ (C(z)(t))2 is a rational parametrization of G = 0.

Hence, G = 0 is of genus zero. The reverse is not true. For instance, we consider the

first-order AODE in Example 4.1.11

G(u, u′) = −zu+ (u2 − 2z2u2 + 2zuu′ + z2u′2)− z3u3.

In this case, k0 = 1. Choose n = 2, by substituting

u = Y 2, u′ = 2Y Y ′,

and comparing with (4.22) we obtain

G(u, u′) = G(Y 2, 2Y Y ′) = Y F (Y, Y ′),

where

F (Y, Y ′) = Y
(
−z + (Y 2 − 2z2Y 2 + 4zY Y ′ + 4z2Y ′2)− z3Y 4

)
is a reducible polynomial. This follows the polynomial F (Y, Y ′) obtained by putting a

transformation (4.19) into an irreducible polynomial G(u, u′) in the formula (4.22) may

not be irreducible. Moreover, even if F is irreducible in the case of G = 0 has genus

zero, the algebraic curve F = 0 is not necessarily rational, for instance, see Example

4.2.14 and also Example 4.2.16.

4.2.2 Reduced forms by power transformations

We aim to investigate all of the irreducible polynomials G(u, u′) whose power

transformations arrive at an irreducible polynomial F (Y, Y ′). We start with following

definition.

Definition 4.2.3. [37, Definition 4.3] Let F (Y, Y ′) be an irreducible polynomial. Let

HDF be the set of degrees of the non-zero homogeneous components of F , and let

k0 = nk0 , see (1.) in Lemma 4.2.2, be the smallest element of HDF . We define the set

DF = {n ≥ 2 | n is a common divisor of all (m− k0) for m ∈ HDF} . (4.23)

Suppose that DF ̸= ∅, and let n ∈ DF . We say such n induces a transformation of the

form (4.19) if there is an irreducible polynomial G(u, u′) such that the formula (4.22)

is satisfied. In this case, we say F is transformed from G by the transformation (4.19)

respect to n. We define the set

PF = {n ∈ DF | n induces a transformation (4.19)}. (4.24)

Clearly that, PF ⊆ DF . If DF = ∅, then PF is an empty set too.
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Lemma 4.2.4. [37, Lemma 4.4] Let F (Y, Y ′) be an irreducible homogeneous polynomial

then DF is an infinite set. Moreover, DF coincides with PF .

Proof. Since F is homogeneous, we can write it as follows

F (Y, Y ′) =
∑

i+j=k0

cijY
iY ′j.

From Definition 4.2.3, HDF = {k0}. This follows DF = N\{0, 1} is an infinite set. For

any n ∈ DF , we have

Y (n−1)k0F (Y, Y ′) = Y (n−1)(i+j)
∑

i+j=k0

cijY
iY ′j =

∑
i+j=k0

cij
nj
Y ni(nY n−1Y ′)j.

By setting

aij =
cij
nj

and G(u, u′) =
∑

i+j=k0

aiju
iu′j,

then F (Y, Y ′) is transformed from G(u, u′) by a power transformation (4.19) which is

induced by n. This follows that n ∈ PF , and the set DF coincides with PF . Moreover,

although there are many power transformations (4.19), they do not change the degree

of G versus F .

Lemma 4.2.5. [37, Lemma 4.5] Let F (Y, Y ′) be an irreducible non-homogeneous poly-

nomial. Then DF is either a finite set or an empty one. Moreover, it is different from

PF .

Proof. Since F is a non-homogeneous polynomial then |HDF | ≥ 2. By the observations

of (4.23) and part (2.) in Lemma 4.2.2, then DF is either a finite set or an empty one.

Moreover, we show PF is different from DF by considering an irreducible polynomial

F (Y, Y ′) = Y 4 + Y ′4 − 1.

In this case, HDF = {0, 4}. This follows k0 = 0 and DF = {2, 4}. In finally, by

computation we find that PF = ∅.

Definition 4.2.6. [37, Definition 4.6] An irreducible non-homogeneous polynomial

F (Y, Y ′) is called a reduced form if PF = ∅. Otherwise, we call F a non-reduced form.

Remark 4.2.7. From Lemma 4.2.5, since F is a non-homogeneous polynomial then

DF is a finite set or an empty one. Since PF ⊆ DF then it is a finite set or an empty

one too. Hence, if F is a non-reduced form then PF is finite.

Theorem 4.2.8. [37, Theorem 4.8] Let F be a non-reduced form. Let n be the greatest

element of PF and G be an irreducible polynomial such that F is transformed from G

respect to the power transformation induced by n. Then G is of a reduced form.
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Proof. Since F is non-reduced then PF ̸= ∅ and it is a finite set. There exists a greatest

element n of PF and an irreducible polynomial G respect to the power transformation

induced by n. Suppose that such G is not a reduced form, then PG ̸= ∅, and there is

2 ≤ n1 ∈ PG. In this case, from Definition 4.2.3 and formula (4.22), we have

H(v, v′) = H(un1 , n1u
n1−1) = u(n1−1)k0G(u, u′),

and

G(u, u′) = G(Y n, nY n−1) = Y (n−1)k0F (Y, Y ′).

That means

H(v, v′) = Y (nn1−1)k0F (Y, Y ′).

Hence, we obtain n < nn1 ∈ PF which is a contradiction. Hence, G is a reduced form.

The proof is complete.

Remark 4.2.9. From the above formulas in Theorem 4.2.8, we find that the greatest

element n is unique and it is divisible for all elements of PF . Therefore, such polynomial

G is also a unique one respect to F . In this case, it is called the reduced form of F .

From the above results, there is an algorithm to determine the reduced form G

from a certain non-homogeneous polynomial F .

Algorithm RedPol

Input: An irreducible non-homogeneous polynomial F (Y, Y ′).

Output: The reduced form of F and the transformation (4.19) if any.

1. Rewrite F in non-zero homogeneous components to determine HDF .

2. Find k0 and compute DF .

3. Determine PF (see Definition 4.2.3).

4. If PF = ∅, then return “F (Y, Y ′) is of reduced form and there is no power

transformation (4.19)”.

5. Else, let n = maxPF (i.e. the greatest element of PF ), then return “The reduced

form G(u, u′) and the power transformation (4.19) respect to n”.
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Remark 4.2.10. Algorithm RedPol lets us know if there is a transformation (4.19)

such that an irreducible non-homogeneous polynomial F (Y, Y ′) is transformed from the

reduced form G(u, u′). In the affirmative case, the lager n is, the smaller the degree of

G is. In addition, let F (Y, Y ′) be defining polynomial of the AODE (4.1), then such

reduced form G(u, u′) can be seen as defining polynomial of the AODE

G(u, u′) = 0. (4.25)

In this case, we say that the AODE (4.25) is reduced and the AODE (4.1) is transformed

from the reduced AODE (4.25) by a transformation (4.19) respect to n. In other words,

we can say that the AODE (4.25) is the reduced form of the AODE (4.1).

To conclude this section, the following theorem ensures that a transformation

(4.19) preserves the property of having a liouvillian solution between a certain first-

order AODE (4.1) and its reduced form (4.25).

Theorem 4.2.11. [37, Theorem 4.11] Suppose that an AODE (4.1) is transformed

from a reduced AODE (4.25) by a power transformation (4.19) (respect to n ≥ 2).

Then the AODE (4.1) has a liouvillian solution if and only if so does the AODE

(4.25). Moreover, if η is a liouvillian solution of the AODE (4.25), then there is a

liouvillian solution ξ of the AODE (4.1) which satisfies following equation

Y n − η = 0. (4.26)

Proof. From the hypothesis, there is n ≥ 2 and k0 ≥ 0 such that

Y (n−1)k0F (Y, Y ′) = G(Y n, nY n−1Y ′) = G(u, u′).

Let η be a liouvillian solution of G(u, u′) = 0, then we consider two cases. First,

suppose that η = 0, then we obtain

k0 = minHDG ≥ 1.

From Lemma 4.2.2, we find that the AODE F (Y, Y ′) = 0 has a solution ξ = 0 since

minHDF = minHDG = k0 ≥ 1.

Next, suppose that η be a non-zero solution. Let ξ be a solution of the equation (4.26),

then ξ(n−1)k0 ̸= 0 and ξ is a non-zero solution of F (Y, Y ′) = 0 by the above relation.

Moreover, such ξ is a liouvillian solution since it is algebraic over C(η). From the two

cases considered, we can say that if η is a liouvillian solution of the AODE (4.25) then

there is a liouvillian solution ξ of the AODE (4.1) which satisfies the equation (4.26).

In the reverse, if ξ is a liouvillian solution of F (Y, Y ′) = 0 then it is not hard to

see that η = ξn is a liouvillian solution of G(u, u′) = 0. The proof is complete.
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4.2.3 Applications

This section is devoted for illustrating the useful aspects when we are combining

Algorithm RedPol and Algorithm LiouSol. In particular, for solving an AODE (4.1),

we consider its reduced form, an AODE (4.25). Then we use the relation shown in

Theorem 4.2.11 to return the solutions of the original AODE (4.1) if there is any.

First, we show that in some cases of solving an AODE (4.1) of genus zero, the

reduced AODE (4.25) may be more suitable for applying Algorithm LiouSol since its

degree is really decreased versus the one of the original AODE.

Example 4.2.12. [21, I·490, page 379] Consider the first-order AODE of genus zero

F (Y, Y ′) = Y 2Y ′2 − 2zY Y ′ + 2Y 2 − z2 + a = 0. (4.27)

Maple 2022 finds a proper parametrization of the algebraic corresponding curve

of the AODE (4.27) after hundreds of seconds, and its output is not suitable for using

Algorithm LiouSol due to such parametrization occupies approximately eight lines and

the associated ODE respect to it contains more than thirty lines in a Maple’s page.

In order to apply Algorithm RedPol, we rewrite the AODE (4.27) into homogeneous

components

F (Y, Y ′) = (a− z2) + (2Y 2 − 2zY Y ′) + Y 2Y ′2 = 0.

In this case, HDF = {0, 2, 4}. This follows k0 = 0 and DF = {2}. From that, we

determine PF = {2}, and hence n = maxPF = 2. The transformation (4.19) respect

to such n = 2 is

u = Y 2, u′ = 2Y Y ′,

and the AODE (4.27) is transformed from the reduced form

G(u, u′) = a− z2 + (2u− zu′) +
u′2

4
= 0. (4.28)

By Maple 2022, the corresponding curve of (4.28) has a proper parametrization(
−t2 + 4zt+ 4z2 − 4a

8
, t

)
.

By Algorithm LiouSol, a liouvillian solution of (4.28) is

−(−2z + c)2 + 4z(−2z + c) + 4z2 − 4a− 8u = 0.

From Theorem 4.2.11, a liouvillian general solution of (4.27) is

8z2 − 8cz + c2 + 4a+ 8Y 2 = 0.
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Remark 4.2.13. First-order AODEs of genus zero in Kamke’s collection which are

similar to the above example are listed [21, I·431, 464, 465, 466, 467, 468, 469, 470,
474, 475, 476, 477, 481, 486, 488, 489, 490, 491, 497, 499, 500, 508, 510.]

The following example is based on [21, I·431] which shows that there exists a

first-order AODE of positive genus whose reduced form is an AODE of genus zero.

Example 4.2.14. Consider the first-order AODE of genus two

F (Y, Y ′) = (Y 2 + 9z2Y ′2)− Y 8 = 0. (4.29)

From the AODE (4.29), HDF = {2, 8}. This follows k0 = 2 and DF = {2, 3, 6}.
By computation, we determine

PF = {2, 3, 6}.

Hence n = maxPF = 6. The transformation respect to n = 6 is

u = Y 6, u′ = 6Y 5Y ′,

and the AODE (4.29) is transformed from the rational AODE

G(u, u′) = (u2 +
1

4
z2u′2)− u3 = 0. (4.30)

The corresponding algebraic curve of (4.30) has a proper parametrization(
t2z2 + 4

4
,
t(t2z2 + 4)

4

)
.

By Algorithm LiouSolAut, a liouvillian general solution of (4.30) is

u = 1 + tan2(c− log z).

From Theorem 4.2.11, a liouvillian general solution of the AODE (4.29) is

Y 6 − 1− tan2(c− log z) = 0.

Remark 4.2.15. First-order AODEs of positive genera in Kamke’s collection whose

reduced form are first-order AODEs of genus zero are listed [21, I·482, 485, 487, 504,
509, 541, 542, 543, 544].

We may avoid solving a radical integral when finding solutions of a first-order

AODE of genus one in [18] by considering its reduced form.
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Example 4.2.16. (Example 2.4.11) Consider a first-order AODE of genus one

F (Y, Y ′) = −Y 3 − 4Y 5 + 4Y 7 − 2Y ′ − 8Y 2Y ′ + 8Y 4Y ′ + 8Y Y ′2 = 0. (4.31)

The defining polynomial of the AODE (4.31) can be written as

F (Y, Y ′) = −2Y ′ + (−Y 3 − 8Y 2Y ′ + 8Y Y ′2) + (−4Y 5 + 8Y 4Y ′) + 4Y 7.

In this case, HDF = {1, 3, 5, 7}. This follows k0 = 1 and DF = {2}. Hence, we obtain

that PF = {2} and n = maxPF = 2. The transformation (4.19) respect to n = 2 is

u = Y 2, u′ = 2Y Y ′,

and the AODE (4.31) is transformed from the AODE of genus zero

G(u, u′) = −u′ + (−u2 − 4uu′ + 2u′2) + (−4u3 + 4u2u′) + 4u4 = 0. (4.32)

The corresponding algebraic curve of (4.32) has a proper parametrization

P̃(t) =

(
− 2(17t+ 1)t

365t2 + 38t+ 1
,

81209t4 + 19380t3 + 1726t2 + 68t+ 1

2(133225t4 + 27740t3 + 2174t2 + 76t+ 1)

)
.

The associated ODE respect to P̃(t) is

t′ = −(17t+ 1)2

4
, (4.33)

which has a liouvillian general solution

t = −17(z + c)− 4

289(z + c)
.

Therefore, a liouvillian general solution of (4.32) is

u =
289(z + c)− 68

289(z + c)2 − 714(z + c) + 730
.

From Theorem 4.2.11, a liouvillian general solution of (4.31) is

Y 2 − 289(z + c)− 68

289(z + c)2 − 714(z + c) + 730
= 0.

In the last part, we aim to consult more of liouvillian solutions of the AODEs

of any genera. If we put the transformations (4.19) (respect to n) into a rational

AODE G(u, u′) = 0, then we may obtain the increasing of the genus of F (Y, Y ′) = 0.

This idea leads to a method of generating an AODE of any positive genus from a

rational one. Moreover, their liouvillian solutions (if any) can be connected by
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Theorem 4.2.11. Clearly, the property of having liouvillian solutions is based on

the original AODE whose genus is of zero. In below with the helping of Maple,

we present a procedure to illustrate the idea and apply it to above examples.

> with(algcurves):
> Testgenus := proc(G, u, v, n, k0)

> local F, y, w;

> F := simplify(subs(u = y^n, v = n*y^(n - 1)*w, G)/y^((n - 1)*k0));

> genus(F, y, w);

> end proc; # the procedure for determining genus of F
> G:= a - z^2 + 2*u - z*v + v^2/4; # Example 4.2.12

> for i from 2 to 10 do

> Testgenus(G, u, v, i, 0); #(k0= 0)

> od;

> 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 # result

> G:=u^2+ z^2*v^2/4-u^3; # Example 4.2.14

> for i from 2 to 20 do

> Testgenus(G, u, v, i, 2); # (k0= 2)

> od;

> 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 # result

> G:=2*v^2+4*u^2*v-4*u*v-v+4*u^4-4*u^3-u^2; # Example 4.2.16

> for i from 1 to 10 do

> Testgenus(G, u, v, i, 1); #(k0= 1)

> od;

> 0 1 2 3 4 5 6 7 8 9 # result

The above computation shows that there are first-order AODEs of positive genera

which obtain a non-constant liouvillian solution. Unfortunately, we are not in control

of the change of genus of such the above F . In general, the above procedure does

not true since the polynomial F obtained from the formula (4.22) may be a reducible

one whose genus does not exist, and this problem has been consulted in Lemma 4.2.2.

Finally, we refer to Proposition 3.3.10 for an example of first-order AODEs of any

positive genera which have no non-constant liouvillian solution.
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4.3 Möbius transformations

A Möbius transformation is a transformation of the form

u =
αY + β

γY + δ
, u′ =

(
αY + β

γY + δ

)′

, (4.34)

where α, β, γ, δ ∈ C(z), αδ − βγ ̸= 0. The inverse substitution of (4.34) is

Y =
δu− β

−γu+ α
, Y ′ =

(
δu− β

−γu+ α

)′

. (4.35)

There is an expression (more details, see [32])

∂M(Y )

∂Y
=
αδ − βγ

(γY + δ)2
,

∂M(Y )

∂z
=
(α′γ − γ′α)Y 2 + (α′δ − αδ′ + β′γ − γ′β)Y + β′δ − δ′β

(γY + δ)2
,

u′ =
du

dz
=
d(M(Y ))

dz
=
∂M(Y )

∂Y
Y ′ +

∂M(Y )

∂z
.

(4.36)

Definition 4.3.1. ([32, Definition 2.1]) Let F (Y, Y ′) =
∑
aijY

iY ′j be an irreducible

polynomial over C(z) then we define the differential total degree of F by the number

µ(F ) = max{i+ 2j | 0 ̸= aij ∈ C(z)}.

By putting (4.34) into the AODE G(u, u′) = 0 and using (4.36) we obtain

G(u, u′) = G

(
αY + β

γY + δ
,

(
αY + β

γY + δ

)′)
=

(
αδ − βγ

γY + δ

)µ(G)

F (Y, Y ′) = 0. (4.37)

In the reverse, from the formulas (4.35) and (4.37), we have

(−γu+ α)µ(F )F

(
δu− β

−γu+ α
,

(
δu− β

−γu+ α

)′)
= G(u, u′) = 0. (4.38)

Noting that µ(G) = µ(F ), see [32].

Definition 4.3.2. Let F (Y, Y ′) = 0 and G(u, u′) = 0 be two first-order AODEs over

C(z). We say F is equivalent to G if there is a Möbius transformation (4.34) such that

the formula (4.38) is satisfied.

The Möbius transformation induces an equivalence relation of first-order AODEs,

and it preserves the property of having an algebraic solution of the equivalence class.

Since such Möbius transformations are birational then they also preserve the genus
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among the corresponding algebraic curves. Möbius transformations are well-studied in

the works of [32, 39] for finding rational and algebraic solutions, therefore, there is no

need to elaborate about them. In here, we prove that they also preserve the property

of having a liouvillian solutions of the equivalence class.

Theorem 4.3.3. [38, Theorem 3.1] Assume that F is equivalent to G. Then F has a

liouvillian solution if and only if so does G. In the affirmative case, the correspondence

of such solution is one to one.

Proof. [32, Theorem 2.2] has shown that F and G obtain the same property of having

an algebraic general solution. From formula (4.38), G has a liouvillian transcendental

solution ξ if and only if

M−1(ξ) =
δξ − β

−γξ + α

is a transcendental solution F since

(−cξ + a)µ(F ) ̸= 0.

By formula (4.34), the correspondence of solutions between F and G is one to one.

Remark 4.3.4. Some examples of using the Möbius transformations for determining

solutions of first-order or higher order AODEs can be found in [32, 39]. In particular,

if we focus on algebraic solutions, in [32], such Möbius transformation is used to check

if a certain AODE is belonged to an autonomous class of first-order AODEs. If this is

the case, [1, Algorithm 4.4] can be applied to determine an algebraic general solution.

From that, an algebraic solution of the original AODE can be returned.

In here, we show that Möbius transformation can be applied to the AODE (4.13)

in Example 4.1.11. In fact, by substituting

Y =
u− 1

z
,

into the AODE (4.13) and using formula (4.38), we obtain

z4F

(
u− 1

z
, (
u− 1

z
)′
)

= G(u, u′) = u′2 − u3 + u2 = 0. (4.39)

By Algorithm LiouSolAut, a liouvillian general solution of the AODE (4.39) is

(exp i(z + c) + 1)2u− 2 exp i(z + c) = 0, i2 = −1.

Therefore, a liouvillian general solution of the original AODE (4.13) is

(exp i(z + c) + 1)2(zY + 1)− 2 exp i(z + c) = 0.
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4.4 Liouvillian solutions of first-order AODEs with

liouvillian coefficients

The content of this section is based on [38, Section 4]. Let us recall C(x) a

differential field with the derivation ′ =
d

dx
and let E be a liouvillian extension of

C(x). Consider the differential equation

F̃ (y, y′) = 0, (4.40)

where y is a function of x and F̃ ∈ E[y, w], i.e. first-order AODEs with the coefficients

in a liouvillian extension E of C(x). For briefly, we call the equation (4.40) a first-order

AODE with liouvillian coefficients. Our purpose is to transform the AODE (4.40) into

the AODE (4.1) by means of change of variables z = φ(x). Since Algorithm LiouSol

is independent of the particular form of the indeterminate z, then z can be seen as a

rational liouvillian element over C (see Definition 2.2.2). Therefore, Algorithm LiouSol

can be extended to the case of solving first-order AODEs with liouvillian coefficients

which can be converted into first-order AODEs over C(z) by a change of variable.

Assume that there is a change

z = φ(x), (4.41)

such that it turns an AODE (4.40) into (4.1), an AODE over C(z), i.e.

F̃ (y, y′) = F (Y, Y ′) = 0,

where F ∈ C(z)[y, w]. If this occurs, then known-tools for finding liouvillian solutions

of a first-order AODE can be applied. If Y (z) is a liouvillian solution of (4.1), then

y(x) = Y ◦ φ(x) is a liouvillan solution of (4.40).

Remark 4.4.1. In the spirit of symbolic computation, there are the same meaning

between two differential fields

(
C(z),

d

dz

)
and

(
C(x),

d

dx

)
. That means there are no

difference between the two derivatives y′ and Y ′ but

y′ =
dy

dx
, Y ′ =

dY

dz
.

By the chain rule, a relation between y′ and Y ′ is expressed

y′ =
dy

dx
=
d(Y ◦ φ)

dx
=
dY

dφ

dφ

dx
=
dY

dz

dz

dx
= Y ′ dz

dx
.

The above expression may be applied to detect a candidate change of variables (4.41).

In the case of transcendental coefficients, we refer the readers to [4, Chapter V]

for details. Here, we present some examples such that the change (4.41) can be applied.
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Example 4.4.2. ([21, I·463, page 374]) Consider first-order AODE

yy′2 − exp (2x) = 0. (4.42)

The coefficients of F̃ are in C(x)(expx). By setting z = φ(x) = expx, the given

AODE is converted into an AODE over C(z)

z2(Y Y ′2 − 1) = 0.

After dividing z2, we obtain an autonomous AODE ([21, I·462, page 373])

Y Y ′2 − 1 = 0, (4.43)

which has a liouvillian general solution

Y =
3

√
9

4
(z + c)2.

Therefore, a liouvillian general solution of the AODE (4.42) is

y = Y ◦ φ =
3

√
9

4
(expx+ c)2.

Example 4.4.3. ([21, I·387, page 358]) Consider first-order AODE

y′2 + (y′ − y) expx = 0. (4.44)

By setting z = φ(x) = exp x, the AODE (4.44) is converted into an AODE

Y ′2z2 + Y ′z2 − Y z = 0. (4.45)

The corresponding curve of (4.45) has a proper parametrization

P(t) = (t2z + tz, t).

The associated ODE (see Algorithm LiouSol in Section 4.1.2) respect to P(t) is

t′ =
dt

dz
= − t2

z(2t+ 1)
.

By symbolic integration (see [41]), the above ODE has only a general solution

log(t2z)− 1

t
= c

which is not liouvillian solution, see [45]. Therefore, the AODE (4.45) has no liouvillian

solution. That means the original AODE (4.44) has no liouvillian solutions.
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In case of radical coefficients, assume that there is a change of variables

x = r(z) ∈ C(z)

(by using [5, Algorithm 3.5]), then it always leads to the existence of the inverse

substitution (4.41) z = φ(x). Since z is algebraic over C(x) and

dz

dx
= (

dr

dz
)−1 ∈ C(z),

then z is a rational liouvillian element over C. In this case, Algorithm LiouSol can be

applied to the case of solving first-order AODE with radical coefficients.

Example 4.4.4. [38, Example 4.4] Consider the first-order AODE

F̃ (y, y′) = −x
√
xy3 + 4x2y′2 − 2xy2 + 4xyy′ −

√
xy + y2 = 0 (4.46)

Maple 2022 finds a solution of the AODE (4.46) after hundreds of seconds and

it is not an explicit form (i.e. it involves integral signs). On the other hand, by using

[5, Algorithm 3.5], there is a change z = φ(x) =
√
x which transforms AODE (4.46)

into the AODE (4.13)

F (Y, Y ′) = −z3Y 3 + z2Y ′2 − 2z2Y 2 + 2zY Y ′ − zY + Y 2 = 0.

From Example 4.1.11, a liouvillian general solution of the AODE (4.46) is

(exp i(
√
x+ c) + 1)2(

√
xy + 1)− 2 exp i(

√
x+ c) = 0.

Remark 4.4.5. More examples of transforming first-order AODEs with radical coef-

ficients into the AODEs (4.1) can be found in [5]. Note that, all of first-order AODEs

obtained in here are of genus zero, hence, they are suitable for Algorithm LiouSol.

Conclusion

In this chapter, we first present Algorithm LiouSol for finding liouvillian solutions

of first-order AODEs (4.1) of genus zero. In addition, we propose a method for solving

a first-order AODE of positive genus via power transformations (Algorithm RedPol

and Theorem 4.2.11). Finally, we consider the problem of solving first-order AODEs

with coefficients in a liouvillian extension of C(x) by means of change of variables.
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Conclusion and future work

We have considered the class of first-order AODEs and studied their liouvillian

solutions. Several methods have been proposed to attack the problem of finding these

solutions for a first-order AODE. In this dissertation, we have achieved the following

main results.

1. We define a rational liouvillian solution (Definition 2.2.3) and give an algorithm

(Algorithm RatLiouSol in Section 2.4) for finding rational liouvillian solutions

of first-order autonomous AODEs.

2. We prove that liouvillian solutions (which include the class of algebraic solutions)

of a first-order autonomous AODE of genus zero must be rational liouvillian

solutions (Lemma 3.2.2) and propose an algorithm (Algorithm LiouSolAut in

Section 3.3) for finding and classifying such a liouvillian solution in algebraic and

transcendental cases.

3. We give an algorithm (Algorithm LiouSol in Section 4.1.2) for finding liouvillian

solutions of first-order AODEs of genus zero (included autonomous and non-

autonomous cases).

4. We define power transformations (Definition 4.2.1) and propose an algorithm

(Algorithm RedPol in Section 4.2.2) to obtain the reduced form of a first-order

AODE. This result leads to a method for finding liouvillian solutions of certain

first-order AODEs of positive genera in the case that their reduced forms are of

genus zero (Section 4.2.3).

5. We transform the problem of solving first-order AODEs with liouvillian coeffi-

cients into the case of solving an AODE (4.1) by means of change of variables

(Section 4.4).
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The following is a short description of our future research.

1. Study on the relation of the positive genera of first-order AODEs which

are generated by substituting a power transformation (4.19) into the

ones of genus zero. In Section 4.2, we have considered this problem but not

yet to give an explicit relations of such genera. To attack this problem, we are

working on related documents [8, 24,27,31].

2. Keep focusing on the problem of determining liouvillian solutions of

first-order ODEs (4.7). This problem has been consulted in Section 4.1.3 and

we will keep it going by focusing on the related works [4, 9, 53–55].

List of author’s related publications

1. Nguyen T. D., Ngo L. X. C. (2021), “Rational liouvillian solutions of algebraic
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